Answered

Which of the following inequalities is true?

A. [tex]\frac{3}{4}\ \textless \ \frac{5}{7}[/tex]

B. [tex]\frac{2}{3}\ \textgreater \ \frac{5}{6}[/tex]

C. [tex]\frac{5}{8}\ \textgreater \ \frac{6}{10}[/tex]

D. [tex]\frac{4}{5}\ \textless \ \frac{2}{9}[/tex]



Answer :

To determine which of the given inequalities is true, let's analyze each one by converting the fractions to decimals and then comparing them.

### Option A:
[tex]\[ \frac{3}{4} \quad \text{and} \quad \frac{5}{7} \][/tex]

Convert each fraction to a decimal:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]
[tex]\[ \frac{5}{7} \approx 0.714 \][/tex]

Compare:
[tex]\[ 0.75 \not< 0.714 \][/tex]

So, [tex]\(\frac{3}{4} < \frac{5}{7}\)[/tex] is false.

### Option B:
[tex]\[ \frac{2}{3} \quad \text{and} \quad \frac{5}{6} \][/tex]

Convert each fraction to a decimal:
[tex]\[ \frac{2}{3} \approx 0.667 \][/tex]
[tex]\[ \frac{5}{6} \approx 0.833 \][/tex]

Compare:
[tex]\[ 0.667 \not> 0.833 \][/tex]

So, [tex]\(\frac{2}{3} > \frac{5}{6}\)[/tex] is false.

### Option C:
[tex]\[ \frac{5}{8} \quad \text{and} \quad \frac{6}{10} \][/tex]

Convert each fraction to a decimal:
[tex]\[ \frac{5}{8} = 0.625 \][/tex]
[tex]\[ \frac{6}{10} = 0.6 \][/tex]

Compare:
[tex]\[ 0.625 > 0.6 \][/tex]

So, [tex]\(\frac{5}{8} > \frac{6}{10}\)[/tex] is true.

### Option D:
[tex]\[ \frac{4}{5} \quad \text{and} \quad \frac{2}{9} \][/tex]

Convert each fraction to a decimal:
[tex]\[ \frac{4}{5} = 0.8 \][/tex]
[tex]\[ \frac{2}{9} \approx 0.222 \][/tex]

Compare:
[tex]\[ 0.8 \not< 0.222 \][/tex]

So, [tex]\(\frac{4}{5} < \frac{2}{9}\)[/tex] is false.

### Conclusion:
The true inequality is:
[tex]\[ \boxed{\frac{5}{8} > \frac{6}{10}} \][/tex]