Type the correct answer in the box. Express the answer to three significant figures.

Given:
[tex]\[ N_2 + 3 Cl_2 \rightarrow 2 NCl_3 , \Delta H = 464 \, \text{kJ/mol} \][/tex]

Use the given bond energies and the periodic table to calculate the energy change in the reaction.

The [tex]\(\Delta H\)[/tex] when 85.3 grams of chlorine reacts in the given reaction is [tex]\(\square\)[/tex] kilojoules.



Answer :

To calculate the energy change when 85.3 grams of chlorine ([tex]\(Cl_2\)[/tex]) reacts in the given reaction, we must follow these steps:

1. Determine the molar mass of [tex]\(Cl_2\)[/tex]:
The molar mass of chlorine ([tex]\(Cl\)[/tex]) is approximately 35.453 grams per mole. Since [tex]\(Cl_2\)[/tex] has two chlorine atoms, the molar mass of [tex]\(Cl_2\)[/tex] is:
[tex]\[ \text{Molar mass of } Cl_2 = 2 \times 35.453 = 70.906 \text{ grams per mole} \][/tex]

2. Calculate the moles of [tex]\(Cl_2\)[/tex] in 85.3 grams:
Using the molar mass, the number of moles [tex]\((n)\)[/tex] of [tex]\(Cl_2\)[/tex] can be determined using the formula:
[tex]\[ n = \frac{\text{mass}}{\text{molar mass}} \][/tex]
Substituting the given values:
[tex]\[ n = \frac{85.3}{70.906} \approx 1.203 \text{ moles} \][/tex]

3. Calculate the energy change using the given [tex]\(\Delta H\)[/tex]:
The enthalpy change ([tex]\(\Delta H\)[/tex]) for the reaction involving 3 moles of [tex]\(Cl_2\)[/tex] is 464 kJ. Therefore, for 1 mole of [tex]\(Cl_2\)[/tex], the enthalpy change is:
[tex]\[ \Delta H = 464 \text{ kJ/mol} \][/tex]
The total energy change for 1.203 moles of [tex]\(Cl_2\)[/tex] is:
[tex]\[ \text{Energy change} = 1.203 \times 464 \approx 558.193 \text{ kJ} \][/tex]

4. Express the energy change to three significant figures:
The energy change to three significant figures is:
[tex]\[ 558 \text{ kJ} \][/tex]

Thus, the energy change [tex]\(\Delta H\)[/tex] when 85.3 grams of chlorine reacts in the given reaction is:
[tex]\[ \boxed{558} \text{ kJ} \][/tex]