Answer :
To determine which expression is equivalent to [tex]\(16^3\)[/tex], we first need to calculate [tex]\(16^3\)[/tex].
1. Calculate [tex]\(16^3\)[/tex]:
[tex]\[ 16^3 = 16 \times 16 \times 16 = 4096 \][/tex]
Next, we need to evaluate each of the given expressions and see which one equals [tex]\(4096\)[/tex].
2. Evaluate [tex]\(2^7\)[/tex]:
[tex]\[ 2^7 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 128 \][/tex]
[tex]\(2^7 = 128\)[/tex], which is not equal to [tex]\(4096\)[/tex].
3. Evaluate [tex]\(2^{11}\)[/tex]:
[tex]\[ 2^{11} = 2 \times 2 \times \ldots \times 2 \quad (\text{11 times}) \][/tex]
Calculating step-by-step:
[tex]\[ 2^2 = 4, \quad 2^3 = 8, \quad 2^4 = 16, \quad 2^5 = 32 \][/tex]
[tex]\[ 2^6 = 64, \quad 2^7 = 128, \quad 2^8 = 256, \quad 2^9 = 512 \][/tex]
[tex]\[ 2^{10} = 1024, \quad 2^{11} = 2048 \][/tex]
[tex]\(2^{11} = 2048\)[/tex], which is not equal to [tex]\(4096\)[/tex].
4. Evaluate [tex]\(2^{12}\)[/tex]:
[tex]\[ 2^{12} = 2 \times 2 \times \ldots \times 2 \quad (\text{12 times}) \][/tex]
Calculating step-by-step:
[tex]\[ 2^2 = 4, \quad 2^3 = 8, \quad 2^4 = 16, \quad 2^5 = 32 \][/tex]
[tex]\[ 2^6 = 64, \quad 2^7 = 128, \quad 2^8 = 256, \quad 2^9 = 512 \][/tex]
[tex]\[ 2^{10} = 1024, \quad 2^{11} = 2048, \quad 2^{12} = 4096 \][/tex]
[tex]\(2^{12} = 4096\)[/tex], which is indeed equal to [tex]\(4096\)[/tex].
5. Evaluate [tex]\(2^{64}\)[/tex]:
This number is extremely large:
[tex]\[ 2^{64} = 18446744073709551616 \][/tex]
[tex]\(2^{64}\)[/tex] is much larger than [tex]\(4096\)[/tex].
So, the expression that is equivalent to [tex]\(16^3\)[/tex] is:
[tex]\[ 2^{12} \][/tex]
1. Calculate [tex]\(16^3\)[/tex]:
[tex]\[ 16^3 = 16 \times 16 \times 16 = 4096 \][/tex]
Next, we need to evaluate each of the given expressions and see which one equals [tex]\(4096\)[/tex].
2. Evaluate [tex]\(2^7\)[/tex]:
[tex]\[ 2^7 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 128 \][/tex]
[tex]\(2^7 = 128\)[/tex], which is not equal to [tex]\(4096\)[/tex].
3. Evaluate [tex]\(2^{11}\)[/tex]:
[tex]\[ 2^{11} = 2 \times 2 \times \ldots \times 2 \quad (\text{11 times}) \][/tex]
Calculating step-by-step:
[tex]\[ 2^2 = 4, \quad 2^3 = 8, \quad 2^4 = 16, \quad 2^5 = 32 \][/tex]
[tex]\[ 2^6 = 64, \quad 2^7 = 128, \quad 2^8 = 256, \quad 2^9 = 512 \][/tex]
[tex]\[ 2^{10} = 1024, \quad 2^{11} = 2048 \][/tex]
[tex]\(2^{11} = 2048\)[/tex], which is not equal to [tex]\(4096\)[/tex].
4. Evaluate [tex]\(2^{12}\)[/tex]:
[tex]\[ 2^{12} = 2 \times 2 \times \ldots \times 2 \quad (\text{12 times}) \][/tex]
Calculating step-by-step:
[tex]\[ 2^2 = 4, \quad 2^3 = 8, \quad 2^4 = 16, \quad 2^5 = 32 \][/tex]
[tex]\[ 2^6 = 64, \quad 2^7 = 128, \quad 2^8 = 256, \quad 2^9 = 512 \][/tex]
[tex]\[ 2^{10} = 1024, \quad 2^{11} = 2048, \quad 2^{12} = 4096 \][/tex]
[tex]\(2^{12} = 4096\)[/tex], which is indeed equal to [tex]\(4096\)[/tex].
5. Evaluate [tex]\(2^{64}\)[/tex]:
This number is extremely large:
[tex]\[ 2^{64} = 18446744073709551616 \][/tex]
[tex]\(2^{64}\)[/tex] is much larger than [tex]\(4096\)[/tex].
So, the expression that is equivalent to [tex]\(16^3\)[/tex] is:
[tex]\[ 2^{12} \][/tex]