Type the correct answer in the box. Use numerals instead of words.

An arc of circle [tex]\(M\)[/tex] has length [tex]\(32 \pi\)[/tex] centimeters and the corresponding central angle has a radian measure of [tex]\(\frac{8}{9} \pi\)[/tex]. What is the radius of the circle?

The radius of the circle is [tex]\(\boxed{\quad}\)[/tex] centimeters.



Answer :

Given:

1. The arc length [tex]\( L \)[/tex] is [tex]\( 32\pi \)[/tex] centimeters.
2. The central angle [tex]\( \theta \)[/tex] is [tex]\( \frac{8}{9}\pi \)[/tex] radians.

We can use the formula that relates the arc length of a circle, its radius, and the central angle:
[tex]\[ L = r \theta \][/tex]

To find the radius [tex]\( r \)[/tex], we rearrange the formula:
[tex]\[ r = \frac{L}{\theta} \][/tex]

Substituting the given values:

[tex]\[ r = \frac{32\pi}{\frac{8}{9}\pi} \][/tex]

Simplify the expression:
[tex]\[ r = \frac{32\pi}{\frac{8\pi}{9}} = \frac{32\pi \cdot 9}{8\pi} = \frac{32 \cdot 9}{8} = \frac{288}{8} = 36 \][/tex]

Therefore, the radius of the circle is [tex]\( 36 \)[/tex] centimeters.