Answer :
Let's solve the equation [tex]\((x+3)^2 + (x+3) - 2 = 0\)[/tex] by introducing a substitution. We'll start by letting [tex]\( u = x + 3 \)[/tex].
1. Substitute [tex]\( u \)[/tex] for [tex]\( x + 3 \)[/tex] in the equation:
[tex]\[ u^2 + u - 2 = 0 \][/tex]
2. Now, we need to solve the quadratic equation [tex]\( u^2 + u - 2 = 0 \)[/tex] for [tex]\( u \)[/tex]. We apply the quadratic formula [tex]\( u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -2 \)[/tex].
3. Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac = 1^2 - 4(1)(-2) = 1 + 8 = 9 \][/tex]
4. Using the quadratic formula:
[tex]\[ u = \frac{-1 \pm \sqrt{9}}{2 \cdot 1} = \frac{-1 \pm 3}{2} \][/tex]
5. Find the two solutions for [tex]\( u \)[/tex]:
[tex]\[ u_1 = \frac{-1 + 3}{2} = \frac{2}{2} = 1 \][/tex]
[tex]\[ u_2 = \frac{-1 - 3}{2} = \frac{-4}{2} = -2 \][/tex]
6. Now, substitute back [tex]\( u = x + 3 \)[/tex] into each solution to find the corresponding [tex]\( x \)[/tex] values:
- For [tex]\( u_1 = 1 \)[/tex]:
[tex]\[ x + 3 = 1 \quad \Rightarrow \quad x = 1 - 3 = -2 \][/tex]
- For [tex]\( u_2 = -2 \)[/tex]:
[tex]\[ x + 3 = -2 \quad \Rightarrow \quad x = -2 - 3 = -5 \][/tex]
Therefore, the solutions to the equation [tex]\((x + 3)^2 + (x + 3) - 2 = 0\)[/tex] are [tex]\( x = -2 \)[/tex] and [tex]\( x = -5 \)[/tex].
1. Substitute [tex]\( u \)[/tex] for [tex]\( x + 3 \)[/tex] in the equation:
[tex]\[ u^2 + u - 2 = 0 \][/tex]
2. Now, we need to solve the quadratic equation [tex]\( u^2 + u - 2 = 0 \)[/tex] for [tex]\( u \)[/tex]. We apply the quadratic formula [tex]\( u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -2 \)[/tex].
3. Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac = 1^2 - 4(1)(-2) = 1 + 8 = 9 \][/tex]
4. Using the quadratic formula:
[tex]\[ u = \frac{-1 \pm \sqrt{9}}{2 \cdot 1} = \frac{-1 \pm 3}{2} \][/tex]
5. Find the two solutions for [tex]\( u \)[/tex]:
[tex]\[ u_1 = \frac{-1 + 3}{2} = \frac{2}{2} = 1 \][/tex]
[tex]\[ u_2 = \frac{-1 - 3}{2} = \frac{-4}{2} = -2 \][/tex]
6. Now, substitute back [tex]\( u = x + 3 \)[/tex] into each solution to find the corresponding [tex]\( x \)[/tex] values:
- For [tex]\( u_1 = 1 \)[/tex]:
[tex]\[ x + 3 = 1 \quad \Rightarrow \quad x = 1 - 3 = -2 \][/tex]
- For [tex]\( u_2 = -2 \)[/tex]:
[tex]\[ x + 3 = -2 \quad \Rightarrow \quad x = -2 - 3 = -5 \][/tex]
Therefore, the solutions to the equation [tex]\((x + 3)^2 + (x + 3) - 2 = 0\)[/tex] are [tex]\( x = -2 \)[/tex] and [tex]\( x = -5 \)[/tex].