What is the period of [tex]$y=\sin (3 x)$[/tex]?

A. [tex]$\frac{\pi}{3}$[/tex]
B. [tex][tex]$\frac{2 \pi}{3}$[/tex][/tex]
C. [tex]$3 \pi$[/tex]
D. [tex]$6 \pi$[/tex]



Answer :

To determine the period of the function [tex]\( y = \sin(3x) \)[/tex], we first need to understand the general form of a sine function. The general form of a sine function is [tex]\( y = \sin(bx) \)[/tex], where [tex]\( b \)[/tex] is a constant that affects the period of the sine wave.

The period of the sine function [tex]\( y = \sin(bx) \)[/tex] is given by:

[tex]\[ \text{Period} = \frac{2\pi}{b} \][/tex]

In this specific problem, the sine function is [tex]\( y = \sin(3x) \)[/tex]. By comparing this to the general form [tex]\( y = \sin(bx) \)[/tex], we can see that [tex]\( b = 3 \)[/tex].

Now, we substitute [tex]\( b \)[/tex] with 3 into the formula for the period of the sine function:

[tex]\[ \text{Period} = \frac{2\pi}{3} \][/tex]

Hence, the period of the function [tex]\( y = \sin(3x) \)[/tex] is:

[tex]\[ \text{Period} = \frac{2\pi}{3} \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{\frac{2\pi}{3}} \][/tex]