If [tex]$f(x)=3x-4$[/tex], which of these is the inverse of [tex]f(x)[/tex]?

A. [tex]f^{-1}(x)=\frac{x}{3}+4[/tex]
B. [tex]f^{-1}(x)=\frac{x-4}{3}[/tex]
C. [tex]f^{-1}(x)=\frac{x}{3}-4[/tex]
D. [tex]f^{-1}(x)=\frac{x+4}{3}[/tex]



Answer :

To find the inverse function [tex]\( f^{-1}(x) \)[/tex] of the given function [tex]\( f(x) = 3x - 4 \)[/tex], we follow these steps:

1. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = 3x - 4 \][/tex]

2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:

Add 4 to both sides to isolate the term involving [tex]\( x \)[/tex]:
[tex]\[ y + 4 = 3x \][/tex]

Next, divide both sides by 3 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y + 4}{3} \][/tex]

3. Interchange [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to get the inverse function:
[tex]\[ f^{-1}(x) = \frac{x + 4}{3} \][/tex]

Thus, the inverse of the function [tex]\( f(x) = 3x - 4 \)[/tex] is:
[tex]\[ f^{-1}(x) = \frac{x + 4}{3} \][/tex]

This corresponds to option D:
[tex]\[ D. \ f^{-1}(x) = \frac{x + 4}{3} \][/tex]