We wish to determine the moles of [tex]$Mg(OH)_2$[/tex] produced when 250 mL of 2.0 M KOH reacts with excess [tex]$Mg(NO_3)_2$[/tex].

[tex]\[
Mg(NO_3)_2(aq) + 2 KOH(aq) \rightarrow 2 KNO_3(aq) + Mg(OH)_2(s)
\][/tex]

In the previous step, you determined 0.50 mol KOH react.

How many moles of [tex]$Mg(OH)_2$[/tex] form during the reaction?

Moles [tex]$Mg(OH)_2$[/tex]:

[tex]\[\boxed{ }\][/tex]



Answer :

To determine the number of moles of [tex]\( \text{Mg(OH)}_2 \)[/tex] produced during the reaction, we can follow these steps:

1. Write the balanced chemical equation:
[tex]\[ \text{Mg(NO}_3\text{)}_2(aq) + 2 \text{KOH}(aq) \rightarrow 2 \text{KNO}_3(aq) + \text{Mg(OH)}_2(s) \][/tex]

2. Interpret the stoichiometry of the reaction:
The balanced equation indicates that 2 moles of [tex]\( \text{KOH} \)[/tex] react with 1 mole of [tex]\( \text{Mg(NO}_3\text{)}_2 \)[/tex] to produce 1 mole of [tex]\( \text{Mg(OH)}_2 \)[/tex].

3. Given information:
- Volume of [tex]\( \text{KOH} \)[/tex] solution = 250 mL = 0.250 L
- Molarity of [tex]\( \text{KOH} \)[/tex] solution = 2.0 M
- Moles of [tex]\( \text{KOH} \)[/tex] reacted = 0.50 mol

4. Determine the moles of [tex]\( \text{Mg(OH)}_2 \)[/tex] produced:
Based on the stoichiometric relationship from the balanced chemical equation, [tex]\( 2 \)[/tex] moles of [tex]\( \text{KOH} \)[/tex] yield [tex]\( 1 \)[/tex] mole of [tex]\( \text{Mg(OH)}_2 \)[/tex]. Therefore, the number of moles of [tex]\( \text{Mg(OH)}_2 \)[/tex] produced is half the number of moles of [tex]\( \text{KOH} \)[/tex] that reacted.

Moles of [tex]\( \text{Mg(OH)}_2 \)[/tex] produced:
[tex]\[ \text{Moles of Mg(OH)}_2 = \frac{\text{Moles of KOH reacted}}{2} = \frac{0.50 \text{ mol}}{2} = 0.25 \text{ mol} \][/tex]

The moles of [tex]\( \text{Mg(OH)}_2 \)[/tex] formed during the reaction is:
[tex]\[ \boxed{0.25 \text{ mol}} \][/tex]