Write an exponential function that includes the following points:

1. [tex](2,1)[/tex] and [tex]\left(3, \frac{1}{3}\right)[/tex]

Step 1: Solve for [tex]b[/tex] by dividing consecutive function values.

Step 2: Use the exponential function equation [tex]f(x) = a b^x[/tex] to solve for [tex]a[/tex].

Step 3: Write the exponential function [tex]f(x) = a b^x[/tex] (substitute the values for [tex]a[/tex] and [tex]b[/tex]).



Answer :

Sure! Let's solve the problem step by step:

### Given Points:
We have the points [tex]\((2, 1)\)[/tex] and [tex]\(\left(3, \frac{1}{3}\right)\)[/tex].

### Step 1: Solve for [tex]\( b \)[/tex]
To find [tex]\( b \)[/tex], we use the relationship between the points given in the form of the exponential function [tex]\( f(x) = a b^x \)[/tex].

For the points [tex]\((2, 1)\)[/tex] and [tex]\(\left(3, \frac{1}{3}\right)\)[/tex], we consider the ratio of the function values:
[tex]\[ \frac{f(3)}{f(2)} = \frac{a b^3}{a b^2} = b \][/tex]

Plugging in the given function values:
[tex]\[ \frac{\frac{1}{3}}{1} = b \][/tex]

Thus,
[tex]\[ b = \frac{1}{3} \][/tex]

### Step 2: Solve for [tex]\( a \)[/tex]
Now, we use one of the given points to solve for [tex]\( a \)[/tex] using the exponential function equation [tex]\( f(x) = a b^x \)[/tex].

Using the point [tex]\((2, 1)\)[/tex]:
[tex]\[ 1 = a \left(\frac{1}{3}\right)^2 \][/tex]

This simplifies to:
[tex]\[ 1 = a \cdot \frac{1}{9} \][/tex]

Solving for [tex]\( a \)[/tex]:
[tex]\[ a = 1 \cdot 9 = 9 \][/tex]

### Step 3: Write the Exponential Function
Now that we have both [tex]\( a = 9 \)[/tex] and [tex]\( b = \frac{1}{3} \)[/tex], we can write the exponential function.

Thus, the exponential function is:
[tex]\[ f(x) = 9 \left(\frac{1}{3}\right)^x \][/tex]

So the exponential function that includes the points [tex]\((2, 1)\)[/tex] and [tex]\(\left(3, \frac{1}{3}\right)\)[/tex] is:
[tex]\[ f(x) = 9 \left(\frac{1}{3}\right)^x \][/tex]