Given: [tex]5 \ \textgreater \ x + 7[/tex]

Choose the solution set.

A. [tex]\{x \mid x \in \mathbb{R}, x \ \textless \ -2\}[/tex]

B. [tex]\{x \mid x \in \mathbb{R}, x \ \textless \ 2\}[/tex]

C. [tex]\{x \mid x \in \mathbb{R}, x \ \textgreater \ -2\}[/tex]

D. [tex]\{x \mid x \in \mathbb{R}, x \ \textgreater \ 2\}[/tex]



Answer :

Sure, let's solve the given inequality step-by-step.

We have the inequality:
[tex]\[ 5 > x + 7 \][/tex]

To isolate [tex]\( x \)[/tex], follow these steps:

1. Subtract 7 from both sides:
[tex]\[ 5 - 7 > x + 7 - 7 \][/tex]

2. Simplify the left side and the right side:
[tex]\[ -2 > x \][/tex]

This inequality can also be written as:
[tex]\[ x < -2 \][/tex]

So, the solution set in interval notation is:
[tex]\[ \{ x \mid x \in \mathbb{R}, x < -2 \} \][/tex]

Thus, the correct solution set from the given options is:
[tex]\[ \{ x \mid x \in \mathbb{R}, x < -2 \} \][/tex]