Enter the units of the student's answer.

[tex]\[
\left(146 \, \frac{\text{mg}}{\text{dL}}\right) \left(\frac{10^{-3} \, \text{g}}{1 \, \text{mg}}\right) \left(\frac{1 \, \text{dL}}{10^{-1} \, \text{L}}\right) \left(\frac{10^{-3} \, \text{L}}{1 \, \text{mL}}\right) = \, \square
\][/tex]



Answer :

Sure, let's walk through this step-by-step.

1. Start with the given value: [tex]\(146 \, \frac{\text{mg}}{\text{dL}}\)[/tex].

2. Convert milligrams to grams:
[tex]\[ 146 \, \frac{\text{mg}}{\text{dL}} \times \frac{1 \, \text{g}}{10^3 \, \text{mg}} = 146 \times 10^{-3} \, \frac{\text{g}}{\text{dL}} = 0.146 \, \frac{\text{g}}{\text{dL}} \][/tex]

3. Convert deciliters to liters:
[tex]\[ 0.146 \, \frac{\text{g}}{\text{dL}} \times \frac{1 \, \text{dL}}{10^{-1} \, \text{L}} = 0.146 \times 10 = 1.46 \, \frac{\text{g}}{\text{L}} \][/tex]

4. Convert liters to milliliters:
[tex]\[ 1.46 \, \frac{\text{g}}{\text{L}} \times \frac{10^{-3} \, \text{L}}{1 \, \text{mL}} = 1.46 \times 10^{-3} = 0.00146 \, \frac{\text{g}}{\text{mL}} \][/tex]

So, the calculations yield the following conversions:
1. [tex]\(0.146 \, \frac{\text{g}}{\text{dL}}\)[/tex],
2. [tex]\(1.46 \, \frac{\text{g}}{\text{L}}\)[/tex], and
3. [tex]\(0.00146 \, \frac{\text{g}}{\text{mL}}\)[/tex].

Hence the full answer is:
[tex]\[ \boxed{0.146 \, \frac{\text{g}}{\text{dL}}, \, 1.46 \, \frac{\text{g}}{\text{L}}, \, 0.00146 \, \frac{\text{g}}{\text{mL}}} \][/tex]