Use the pull-down menus to show the simplification of this expression:

[tex]\[ 7x^2 - 6x(7 - 8x) \][/tex]

[Select] [tex]$\square$[/tex] [tex]$x^2$[/tex]

[Select] [tex]$\square$[/tex] [tex]$x$[/tex]

[Select] [tex]$\square$[/tex]

Be sure to select 0 if there is none of that variable/constant.



Answer :

Let's simplify the given expression step by step.

Given expression:
[tex]\[ 7x^2 - 6x(7 - 8x) \][/tex]

First, distribute [tex]\(-6x\)[/tex] through [tex]\( (7 - 8x) \)[/tex]:

[tex]\[ -6x \cdot 7 = -42x \][/tex]
[tex]\[ -6x \cdot -8x = 48x^2 \][/tex]

Now, substitute these results back into the original expression:

[tex]\[ 7x^2 - 42x + 48x^2 \][/tex]

Next, combine like terms:

[tex]\[ 7x^2 + 48x^2 - 42x \][/tex]

Combine the [tex]\(x^2\)[/tex] terms:

[tex]\[ (7 + 48)x^2 - 42x = 55x^2 - 42x \][/tex]

The simplified expression is:

[tex]\[ 55x^2 - 42x \][/tex]

Now we can identify the coefficients for each term:

- For [tex]\(x^2\)[/tex]: [tex]\( 55 \)[/tex]
- For [tex]\(x\)[/tex]: [tex]\( -42 \)[/tex]
- For the constant term: [tex]\( 0 \)[/tex] (since there is no constant term in the simplified expression)

So, filling in the blanks:

- [tex]\( \text{For } x^2: \ 55 \)[/tex]
- [tex]\( \text{For } x: \ -42 \)[/tex]
- [tex]\( \text{For the constant term: } 0 \)[/tex]

This completes the simplification process.