Complete the lesson reflection by circling your current understanding of [tex]$t$[/tex].

Write an exponential function that includes the following points:

1. [tex]$(-2, 3)$[/tex] and [tex]$(-1, 9)$[/tex]

[tex]\[
\begin{array}{r}
x = -2 \\
f(x) = 3 \\
b = 3
\end{array}
\][/tex]

[tex]\[
\begin{array}{l}
3 = \\
b = \frac{-1}{-2} = \frac{a}{3} = 3 \\
\end{array}
\][/tex]



Answer :

Sure! Let's break down the problem and find the exponential function that passes through the points [tex]\( (-2, 3) \)[/tex] and [tex]\( (-1, 9) \)[/tex].

### Step-by-Step Solution:

1. Identify the Form of the Exponential Function:

We are looking for an exponential function of the form:
[tex]\[ y = a \cdot b^x \][/tex]

2. Substitute the Given Points into the Equation:

Let's substitute the points [tex]\( (-2, 3) \)[/tex] and [tex]\( (-1, 9) \)[/tex] into the exponential function and create two equations.

For the point [tex]\( (-2, 3) \)[/tex]:
[tex]\[ 3 = a \cdot b^{-2} \][/tex]

For the point [tex]\( (-1, 9) \)[/tex]:
[tex]\[ 9 = a \cdot b^{-1} \][/tex]

3. Divide the Equations to Eliminate [tex]\( a \)[/tex]:

We can divide the second equation by the first to solve for [tex]\( b \)[/tex]:
[tex]\[ \frac{9}{3} = \frac{a \cdot b^{-1}}{a \cdot b^{-2}} \][/tex]
[tex]\[ 3 = \frac{b^{-1}}{b^{-2}} \][/tex]
[tex]\[ 3 = b \][/tex]

Hence, we have [tex]\( b = 3 \)[/tex].

4. Substitute [tex]\( b \)[/tex] Back to Find [tex]\( a \)[/tex]:

Now that we know [tex]\( b = 3 \)[/tex], we can substitute [tex]\( b \)[/tex] back into one of the original equations to solve for [tex]\( a \)[/tex].

Using the equation [tex]\( 3 = a \cdot 3^{-2} \)[/tex]:
[tex]\[ 3 = a \cdot \frac{1}{9} \][/tex]
[tex]\[ 3 = \frac{a}{9} \][/tex]
[tex]\[ a = 3 \cdot 9 \][/tex]
[tex]\[ a = 27 \][/tex]

So, the constants are [tex]\( a = 27 \)[/tex] and [tex]\( b = 3 \)[/tex].

5. Write the Exponential Function:

The exponential function that passes through the points [tex]\( (-2, 3) \)[/tex] and [tex]\( (-1, 9) \)[/tex] is:
[tex]\[ y = 27 \cdot 3^x \][/tex]

This is the required exponential function.