Sure, let's simplify the given expression step-by-step:
[tex]\[ -5x + 7(4 + 6x) \][/tex]
First, distribute the 7 through the parentheses:
[tex]\[ -5x + 7 \cdot 4 + 7 \cdot 6x \][/tex]
This gives us:
[tex]\[ -5x + 28 + 42x \][/tex]
Now, combine the like terms [tex]\(-5x\)[/tex] and [tex]\(42x\)[/tex]:
[tex]\[ -5x + 42x + 28 \][/tex]
Combine the [tex]\(x\)[/tex] terms:
[tex]\[ (42x - 5x) + 28 \][/tex]
This simplifies to:
[tex]\[ 37x + 28 \][/tex]
So the simplified form of [tex]\( -5x + 7(4 + 6x) \)[/tex] is:
[tex]\[ 37x + 28 \][/tex]
There are no fractions or further simplifications needed in this case, so the final answer is:
[tex]\[ 37x + 28 \][/tex]