Enter the correct answer in the box.

Write this expression in simplest form:

[tex]\[3\sqrt{496^3d}\][/tex]

Don't include any spaces or multiplication symbols between coefficients or variables in your answer.



Answer :

Sure, let's break down the expression [tex]\(3\sqrt{496^3}d\)[/tex] step by step.

1. Simplify the inner power:
First, we need to calculate [tex]\(496^3\)[/tex].
[tex]\[ 496^3 = 496 \times 496 \times 496 = 121,287,296 \times 496 = 60,211,306,496 \][/tex]

2. Calculate the square root:
Now, we need to take the square root of the result from step 1:
[tex]\[ \sqrt{60,211,306,496} \][/tex]

3. Simplify with the cube root:
Then, we need to take the cube root of the square root computed in step 2:
[tex]\[ 3\sqrt{60,211,306,496} \][/tex]
To simplify, we know:
[tex]\[ 3\sqrt{a^3} = a \][/tex]
Therefore:
[tex]\[ \sqrt{60,211,306,496} = \sqrt{(496^3)} = 496 \][/tex]

Thus:
[tex]\[ 3\sqrt{(60,211,306,496)} = 3 \times 496 = 1488 \][/tex]

4. Incorporate the variable [tex]\(d\)[/tex]:
Finally, we include the variable [tex]\(d\)[/tex]:
[tex]\[ 1488d \][/tex]

So, the simplified form of the original expression is:
[tex]\[ 1488d \][/tex]