Answer :
We start with the given information:
- Height [tex]\(h = 9\)[/tex] feet.
- Volume [tex]\(V = 1080\)[/tex] cubic feet.
- The length [tex]\(l\)[/tex] is 2 feet longer than the width [tex]\(w\)[/tex].
We need to determine if it's possible for the width of a stall to be 10 feet. To do this, we first formulate an equation representing the volume of the stall in terms of its width [tex]\(x\)[/tex].
### Step-by-Step Solution:
1. Express the length in terms of the width:
Since the length [tex]\(l\)[/tex] is 2 feet longer than the width [tex]\(w\)[/tex], let:
[tex]\[ l = x + 2 \][/tex]
2. Write the volume formula using the given dimensions:
The volume of the stall [tex]\(V\)[/tex] is given by the formula for the volume of a rectangular prism:
[tex]\[ V = l \cdot w \cdot h \][/tex]
3. Substitute the given values and the expression for [tex]\(l\)[/tex]:
[tex]\[ 1080 = (x + 2) \cdot x \cdot 9 \][/tex]
4. Simplify the equation:
[tex]\[ 1080 = 9 \cdot x \cdot (x + 2) \][/tex]
5. Distribute and combine like terms:
[tex]\[ 1080 = 9x^2 + 18x \][/tex]
Thus, the complete equation representing the volume of a stall in terms of its width [tex]\(x\)[/tex] is:
[tex]\[ 9x^2 + 18x = 1080 \][/tex]
To check if it is possible for the width [tex]\(x\)[/tex] to be 10 feet:
1. Substitute [tex]\(x = 10\)[/tex] into the equation:
[tex]\[ 9 \cdot 10^2 + 18 \cdot 10 = 1080 \][/tex]
2. Calculate the left-hand side:
[tex]\[ 9 \cdot 100 + 180 = 1080 \][/tex]
[tex]\[ 900 + 180 = 1080 \][/tex]
Since the equation holds true, it confirms that it is possible for the width of a stall to be 10 feet.
### Summary
Fill the drop-down menus accordingly:
1. [tex]\(9x^2 + 18x = 1080\)[/tex]
2. It is possible for the width of a stall to be 10 feet.
Therefore:
[tex]$x^2+$[/tex] 9
18 [tex]$x=$[/tex] 1080
Is it possible for the width of a stall to be 10 feet? True
- Height [tex]\(h = 9\)[/tex] feet.
- Volume [tex]\(V = 1080\)[/tex] cubic feet.
- The length [tex]\(l\)[/tex] is 2 feet longer than the width [tex]\(w\)[/tex].
We need to determine if it's possible for the width of a stall to be 10 feet. To do this, we first formulate an equation representing the volume of the stall in terms of its width [tex]\(x\)[/tex].
### Step-by-Step Solution:
1. Express the length in terms of the width:
Since the length [tex]\(l\)[/tex] is 2 feet longer than the width [tex]\(w\)[/tex], let:
[tex]\[ l = x + 2 \][/tex]
2. Write the volume formula using the given dimensions:
The volume of the stall [tex]\(V\)[/tex] is given by the formula for the volume of a rectangular prism:
[tex]\[ V = l \cdot w \cdot h \][/tex]
3. Substitute the given values and the expression for [tex]\(l\)[/tex]:
[tex]\[ 1080 = (x + 2) \cdot x \cdot 9 \][/tex]
4. Simplify the equation:
[tex]\[ 1080 = 9 \cdot x \cdot (x + 2) \][/tex]
5. Distribute and combine like terms:
[tex]\[ 1080 = 9x^2 + 18x \][/tex]
Thus, the complete equation representing the volume of a stall in terms of its width [tex]\(x\)[/tex] is:
[tex]\[ 9x^2 + 18x = 1080 \][/tex]
To check if it is possible for the width [tex]\(x\)[/tex] to be 10 feet:
1. Substitute [tex]\(x = 10\)[/tex] into the equation:
[tex]\[ 9 \cdot 10^2 + 18 \cdot 10 = 1080 \][/tex]
2. Calculate the left-hand side:
[tex]\[ 9 \cdot 100 + 180 = 1080 \][/tex]
[tex]\[ 900 + 180 = 1080 \][/tex]
Since the equation holds true, it confirms that it is possible for the width of a stall to be 10 feet.
### Summary
Fill the drop-down menus accordingly:
1. [tex]\(9x^2 + 18x = 1080\)[/tex]
2. It is possible for the width of a stall to be 10 feet.
Therefore:
[tex]$x^2+$[/tex] 9
18 [tex]$x=$[/tex] 1080
Is it possible for the width of a stall to be 10 feet? True