11. Evaluate the following expressions, given the values of the variables: [tex]p=7, q=9, r=11[/tex]

(a) [tex]p \cdot (q \% 4) \cdot (++r)[/tex]

(b) [tex](r--) \% 5 + (r++ / 5) \cdot p[/tex]

(c) [tex]p += (--p + 5) \cdot (p++) \cdot (r / 2)[/tex]

(d) [tex]q \cdot= 5 + (--q) \cdot (q++) + 10[/tex]



Answer :

Sure, let's evaluate the given expressions step by step, using the initial values [tex]\( p=7 \)[/tex], [tex]\( q=9 \)[/tex], and [tex]\( r=11 \)[/tex].

### a) [tex]\( p \times (q \% 4) \times (++r) \)[/tex]

1. Compute [tex]\( q \% 4 \)[/tex]:
[tex]\[ q \% 4 = 9 \% 4 = 1 \][/tex]

2. Increment [tex]\( r \)[/tex] by 1:
[tex]\[ r = 11 + 1 = 12 \][/tex]

3. Calculate the expression:
[tex]\[ p \times (q \% 4) \times (++r) = 7 \times 1 \times 12 = 84 \][/tex]

So, the value of expression (a) is:
[tex]\[ 84 \][/tex]

### b) [tex]\( (r--) \% 5 + \left(\frac{r++}{5}\right) \times p \)[/tex]

1. Use the current value of [tex]\( r \)[/tex] which is 12, then decrement [tex]\( r \)[/tex]:
[tex]\[ r = 12 \Rightarrow 11 \][/tex]
So, [tex]\( (r--) \% 5 = 12 \% 5 = 2 \)[/tex]

2. Use the current value of [tex]\( r \)[/tex] which is 11, then increment [tex]\( r \)[/tex]:
[tex]\[ r = 11 \Rightarrow 12 \][/tex]
So, [tex]\( \frac{r++}{5} = \frac{11}{5} = 2.2 \)[/tex]

3. Multiply by [tex]\( p \)[/tex]:
[tex]\[ 2.2 \times 7 = 15.4 \][/tex]

4. Add the results:
[tex]\[ 2 + 15.4 = 17.4 \][/tex]

So, the value of expression (b) is:
[tex]\[ 17.4 \][/tex]

### c) [tex]\( p += (--p + 5) \times (p++) \times \left(\frac{r}{2}\right) \)[/tex]

1. Decrement [tex]\( p \)[/tex] by 1:
[tex]\[ p = 7 - 1 = 6 \][/tex]

2. Increment [tex]\( p \)[/tex] after using its current value:
[tex]\[ p = 6 + 5 = 11, \quad 6 \times 7 = 42 \Rightarrow = 7 \][/tex]

3. Current value of [tex]\( r \)[/tex] divided by 2:
[tex]\[ \frac{r}{2} = \frac{11}{2} = 5.5 \][/tex]

4. Calculate the expression inside parentheses:
[tex]\[ (p - 1 + 5) \times p \times \left(\frac{r}{2}\right) \][/tex]

5. Value to add to [tex]\( p \)[/tex]:
[tex]\[ 6\ast 7\ast 5.5 = 231 \][/tex]

6. Summing up:
[tex]\[ 7 + 231 \][/tex]

So, the value of expression (c) is:
[tex]\[ 423.5 \][/tex]

### d) [tex]\( q ^= 5 + (--q) \times (q++) + 10 \)[/tex]

1. Decrement [tex]\( q \)[/tex] first:
[tex]\[ q = 9 - 1 = 8 \][/tex]

2. Use the current value, then increment [tex]\( q \)[/tex]:
[tex]\[ q = 8 \Rightarrow 9, \Rightarrow 0*q + 10 \][/tex]

4. current value of q
[tex]\[ 87-9×8 ,(None) \][/tex]

The overall value of each expression is:

a) 84
b) 16.4
c) 423.5
d) 87