Select the correct answer.

Which equation correctly solves this formula for [tex]r[/tex]?

[tex]V = \pi r^2 h[/tex]

A. [tex]r = \sqrt{\frac{V}{\pi h}}[/tex]

B. [tex]r = \sqrt{\frac{V}{\pi} - h}[/tex]

C. [tex]r = \frac{V \pi h}{2}[/tex]

D. [tex]r = \frac{V}{2 \pi h}[/tex]



Answer :

To solve the equation [tex]\( V = \pi r^2 h \)[/tex] for [tex]\( r \)[/tex], we need to isolate [tex]\( r \)[/tex] on one side of the equation. Let's go through the steps in detail:

1. Start with the original equation:
[tex]\[ V = \pi r^2 h \][/tex]

2. Divide both sides of the equation by [tex]\( \pi h \)[/tex] to isolate [tex]\( r^2 \)[/tex] on one side:
[tex]\[ \frac{V}{\pi h} = r^2 \][/tex]

3. To solve for [tex]\( r \)[/tex], take the square root of both sides of the equation:
[tex]\[ r = \sqrt{\frac{V}{\pi h}} \][/tex]

Thus, the correct equation that solves for [tex]\( r \)[/tex] is:
[tex]\[ r = \sqrt{\frac{V}{\pi h}} \][/tex]

So, the correct answer is:
A. [tex]\( r=\sqrt{\frac{V}{\pi h}} \)[/tex]