Graph each exponential function. Identify [tex]a, b[/tex], the [tex]y[/tex]-intercept, and the end behavior of the graph.

1. [tex]f(x)=3(2)^x[/tex]

\begin{tabular}{|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & -2 & -1 & 0 & 1 & 2 \\
\hline
[tex]$f(x)$[/tex] & & & & & \\
\hline
\end{tabular}



Answer :

Alright, let's go through the problem step by step.

### Step 1: Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]

Given the exponential function [tex]\( f(x) = 3 \cdot 2^x \)[/tex], we can identify the coefficients [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
- [tex]\(a\)[/tex] is the coefficient in front of the exponential term, which is [tex]\(3\)[/tex].
- [tex]\(b\)[/tex] is the base of the exponent, which is [tex]\(2\)[/tex].

### Step 2: Calculate [tex]\( f(x) \)[/tex] for given [tex]\( x \)[/tex] values

We are given a table with specific [tex]\( x \)[/tex] values: [tex]\(-2, -1, 0, 1, 2\)[/tex]. We will plug these [tex]\( x \)[/tex] values into the function [tex]\( f(x) = 3 \cdot 2^x \)[/tex] to find their corresponding [tex]\( f(x) \)[/tex] values.

1. For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = 3 \cdot 2^{-2} = 3 \cdot \frac{1}{4} = 0.75 \][/tex]

2. For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = 3 \cdot 2^{-1} = 3 \cdot \frac{1}{2} = 1.5 \][/tex]

3. For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 3 \cdot 2^0 = 3 \cdot 1 = 3 \][/tex]

4. For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 3 \cdot 2^1 = 3 \cdot 2 = 6 \][/tex]

5. For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 3 \cdot 2^2 = 3 \cdot 4 = 12 \][/tex]

Thus, the completed table is:
[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline $x$ & -2 & -1 & 0 & 1 & 2 \\ \hline $f ( x )$ & 0.75 & 1.5 & 3 & 6 & 12 \\ \hline \end{tabular} \][/tex]

### Step 3: Identify the [tex]\( y \)[/tex]-intercept

The [tex]\( y \)[/tex]-intercept is the value of the function when [tex]\( x = 0 \)[/tex].
[tex]\[ f(0) = 3 \][/tex]
So, the [tex]\( y \)[/tex]-intercept is [tex]\( 3 \)[/tex].

### Step 4: Determine the end behavior

For the end behavior, we analyze what happens to [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] and [tex]\( -\infty \)[/tex]:
- As [tex]\( x \to \infty \)[/tex], the term [tex]\( 2^x \)[/tex] grows exponentially, and thus [tex]\( f(x) \to \infty \)[/tex]. Therefore, as [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], the term [tex]\( 2^x \)[/tex] approaches [tex]\( 0 \)[/tex] because [tex]\( 2^x \)[/tex] is a fraction that gets smaller and smaller. So, [tex]\( f(x) \to 0 \)[/tex]. Therefore, as [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to 0 \)[/tex].

### Summary

- [tex]\( a = 3 \)[/tex]
- [tex]\( b = 2 \)[/tex]
- [tex]\( y \)[/tex]-intercept: [tex]\( 3 \)[/tex]
- End behavior:
- As [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex]
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to 0 \)[/tex]

The graph of the exponential function [tex]\( f(x) = 3 \cdot 2^x \)[/tex] will show the values calculated in the table, with the [tex]\( y \)[/tex]-intercept at [tex]\( 3 \)[/tex], growing rapidly as [tex]\( x \)[/tex] increases, and approaching [tex]\( 0 \)[/tex] as [tex]\( x \)[/tex] decreases.