[tex]\[ f(x) = -2(3)^x \][/tex]

\begin{tabular}{|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & -2 & -1 & 0 & 1 & 2 \\
\hline
[tex]$f(x)$[/tex] & & & & & \\
\hline
\end{tabular}



Answer :

Sure, let's evaluate the function [tex]\( f(x) = -2 \cdot 3^x \)[/tex] for each of the given [tex]\( x \)[/tex] values: -2, -1, 0, 1, and 2.

1. For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = -2 \cdot 3^{-2} \][/tex]
Recall that [tex]\( 3^{-2} = \frac{1}{3^2} = \frac{1}{9} \)[/tex]:
[tex]\[ f(-2) = -2 \cdot \frac{1}{9} = -\frac{2}{9} \approx -0.2222 \][/tex]

2. For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = -2 \cdot 3^{-1} \][/tex]
Recall that [tex]\( 3^{-1} = \frac{1}{3} \)[/tex]:
[tex]\[ f(-1) = -2 \cdot \frac{1}{3} = -\frac{2}{3} \approx -0.6667 \][/tex]

3. For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = -2 \cdot 3^0 \][/tex]
Recall that [tex]\( 3^0 = 1 \)[/tex]:
[tex]\[ f(0) = -2 \cdot 1 = -2 \][/tex]

4. For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = -2 \cdot 3^1 \][/tex]
Recall that [tex]\( 3^1 = 3 \)[/tex]:
[tex]\[ f(1) = -2 \cdot 3 = -6 \][/tex]

5. For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = -2 \cdot 3^2 \][/tex]
Recall that [tex]\( 3^2 = 9 \)[/tex]:
[tex]\[ f(2) = -2 \cdot 9 = -18 \][/tex]

With these evaluations, we can now fill in the table:

[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline $x$ & -2 & -1 & 0 & 1 & 2 \\ \hline $f(x)$ & -0.2222 & -0.6667 & -2 & -6 & -18 \\ \hline \end{tabular} \][/tex]