Answer :

Let's solve the limit:

[tex]\[ \lim_{x \to a} \frac{3f(x)}{h(x) + 9f(x)} \][/tex]

Step-by-step solution:

1. Evaluate the numerator:

The numerator of the fraction is [tex]\( 3f(x) \)[/tex]. As [tex]\( x \)[/tex] approaches [tex]\( a \)[/tex]:

[tex]\[ \text{Numerator} = 3f(x) \rightarrow 3f(a) \][/tex]

2. Evaluate the denominator:

The denominator of the fraction is [tex]\( h(x) + 9f(x) \)[/tex]. As [tex]\( x \)[/tex] approaches [tex]\( a \)[/tex]:

- The term [tex]\( h(x) \)[/tex] approaches [tex]\( h(a) \)[/tex]
- The term [tex]\( 9f(x) \)[/tex] approaches [tex]\( 9f(a) \)[/tex]

Therefore, the denominator is:

[tex]\[ \text{Denominator} = h(x) + 9f(x) \rightarrow h(a) + 9f(a) \][/tex]

3. Combine the results:

Putting the evaluated results together, we get:

[tex]\[ \lim_{x \to a} \frac{3f(x)}{h(x) + 9f(x)} = \frac{3f(a)}{h(a) + 9f(a)} \][/tex]

So, the limit is:

[tex]\[ \boxed{\frac{3f(a)}{h(a) + 9f(a)}} \][/tex]