Find [tex]$x$[/tex] and [tex]$y$[/tex] in the equation:

[tex]\[
\begin{tabular}{l|l|l|l|l}
$x$ & 89 & | & 48 & \\
\hline
$y$ & & -164 & & -58 \\
\hline
\end{tabular}
\][/tex]

Given that:

[tex]\[ y = -3x - 4 \][/tex]

Therefore, [tex]$y$[/tex] is:



Answer :

To find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] for the given equation [tex]\(y = -3x - 4\)[/tex] using the provided table values, we can follow these steps:

### Step 1: Utilizing the values from the table

The table given is:

[tex]\[ \begin{tabular}{l|l|l|l} $x$ & 89 & \mid 48 & \\ \hline $y$ & & -164 & \\ \end{tabular} \][/tex]

We need to find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] given the equation [tex]\(y = -3x - 4\)[/tex].

### Step 2: Solving for [tex]\(x\)[/tex] when [tex]\(y\)[/tex] is given

From the table, it is known that [tex]\(y = -164\)[/tex] for an unknown value of [tex]\(x\)[/tex].

So, we start by solving the equation for [tex]\(x\)[/tex]:

[tex]\[ y = -3x - 4 \][/tex]
[tex]\[ -164 = -3x - 4 \][/tex]

First, isolate the term involving [tex]\(x\)[/tex]:

[tex]\[ -164 + 4 = -3x \][/tex]
[tex]\[ -160 = -3x \][/tex]

Now, solve for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{-160}{-3} \][/tex]
[tex]\[ x \approx 53.33 \][/tex]

### Step 3: Solving for [tex]\(y\)[/tex] when [tex]\(x\)[/tex] is given

Next, we'll plug the value [tex]\(x = 89\)[/tex] from the table to find [tex]\(y\)[/tex]:

[tex]\[ y = -3x - 4 \][/tex]
[tex]\[ y = -3(89) - 4 \][/tex]
[tex]\[ y = -267 - 4 \][/tex]
[tex]\[ y = -271 \][/tex]

So, the detailed, step-by-step solutions yield:

- When [tex]\(y = -164\)[/tex], [tex]\(x \approx 53.33\)[/tex]
- When [tex]\(x = 89\)[/tex], [tex]\(y = -271\)[/tex]