Colby and Danielle clean pools for extra money over the summer. Colby's income is determined by [tex]f(x)=3x+12[/tex], where [tex]x[/tex] is the number of hours. Danielle's income is [tex]g(x)=5x+10[/tex]. If Colby and Danielle were to combine their efforts, their income would be [tex]h(x)=f(x)+g(x)[/tex]. Assume Colby works 4 hours.

Create the function [tex]h(x)[/tex], and indicate if Colby will make more money working alone or by teaming with Danielle.

A. [tex]h(x)=2x+2[/tex], work alone
B. [tex]h(x)=2x+2[/tex], team with Danielle
C. [tex]h(x)=8x+22[/tex], team with Danielle
D. [tex]h(x)=8x+22[/tex], work alone



Answer :

Let's start by deriving the combined income function [tex]\( h(x) \)[/tex].

1. Determine the income functions:
- Colby's income function is [tex]\( f(x) = 3x + 12 \)[/tex].
- Danielle's income function is [tex]\( g(x) = 5x + 10 \)[/tex].

2. Combine these functions to find [tex]\( h(x) \)[/tex], their combined income:
- [tex]\( h(x) = f(x) + g(x) \)[/tex].
- Therefore, [tex]\( h(x) = (3x + 12) + (5x + 10) \)[/tex].
- Simplifying, [tex]\( h(x) = 3x + 5x + 12 + 10 \)[/tex].
- Thus, [tex]\( h(x) = 8x + 22 \)[/tex].

So, the function [tex]\( h(x) \)[/tex] is [tex]\( h(x) = 8x + 22 \)[/tex].

3. Calculate Colby's income and the combined income for 4 hours:
- Colby's income working alone for 4 hours is [tex]\( f(4) \)[/tex].
- [tex]\( f(4) = 3(4) + 12 \)[/tex].
- [tex]\( f(4) = 12 + 12 \)[/tex].
- [tex]\( f(4) = 24 \)[/tex].

- The combined income if Colby and Danielle work together for 4 hours is [tex]\( h(4) \)[/tex].
- [tex]\( h(4) = 8(4) + 22 \)[/tex].
- [tex]\( h(4) = 32 + 22 \)[/tex].
- [tex]\( h(4) = 54 \)[/tex].

4. Compare the incomes:
- Colby's income alone is [tex]\( 24 \)[/tex].
- The combined income is [tex]\( 54 \)[/tex].

This means Colby will make more money by teaming with Danielle, as the combined income ([tex]\( 54 \)[/tex]) is greater than Colby's individual income ([tex]\( 24 \)[/tex]).

Thus, the correct option is:
[tex]\[ h(x) = 8x + 22, \ \text{team with Danielle} \][/tex]