Simplify the expression. Write your answer as a complex number.

[tex]\[ 5 \sqrt{49} - \sqrt{-36} \][/tex]

A. [tex]\( 35 - 6i \)[/tex]

B. [tex]\( 35 - 18i \)[/tex]

C. [tex]\( 35 + 6i \)[/tex]

D. [tex]\( 35 + 18i \)[/tex]



Answer :

Let's simplify the given expression step by step:

[tex]\[ 5 \sqrt{49} - \sqrt{-36} \][/tex]

First, we'll simplify each part separately.

1. Simplify [tex]\( 5 \sqrt{49} \)[/tex]:

[tex]\[ \sqrt{49} = 7 \][/tex]

Hence,

[tex]\[ 5 \sqrt{49} = 5 \times 7 = 35 \][/tex]

2. Simplify [tex]\(\sqrt{-36}\)[/tex]:

The square root of a negative number involves an imaginary unit [tex]\(i\)[/tex] where [tex]\(i = \sqrt{-1}\)[/tex].

[tex]\[ \sqrt{-36} = \sqrt{36} \cdot \sqrt{-1} = 6i \][/tex]

Now, we combine these simplified parts back into the original expression:

[tex]\[ 5 \sqrt{49} - \sqrt{-36} = 35 - 6i \][/tex]

So, the simplified expression as a complex number is:

[tex]\[ 35 - 6i \][/tex]

Therefore, the correct answer is:

[tex]\[ 35 - 6i \][/tex]