Simplify [tex]\((6+i)(8-3i)\)[/tex]:

A. [tex]\(51-10i\)[/tex]

B. [tex]\(45-10i\)[/tex]

C. [tex]\(48-3i^2\)[/tex]

D. [tex]\(48-10i-3i^2\)[/tex]



Answer :

To simplify the expression [tex]\((6 + i)(8 - 3i)\)[/tex], we can use the distributive property to expand the product. Let's go through the steps in detail:

1. Distribution:
[tex]\[ (6 + i)(8 - 3i) = 6 \cdot 8 + 6 \cdot (-3i) + i \cdot 8 + i \cdot (-3i) \][/tex]

2. Multiply each term:
- [tex]\(6 \cdot 8 = 48\)[/tex]
- [tex]\(6 \cdot (-3i) = -18i\)[/tex]
- [tex]\(i \cdot 8 = 8i\)[/tex]
- [tex]\(i \cdot (-3i) = -3i^2\)[/tex]

To find [tex]\(-3i^2\)[/tex], recall that [tex]\(i^2 = -1\)[/tex]:

[tex]\[ -3i^2 = -3(-1) = 3 \][/tex]

3. Combine the terms:
- Real parts: [tex]\(48 + 3 = 51\)[/tex]
- Imaginary parts: [tex]\(-18i + 8i = -10i\)[/tex]

4. Construct the simplified form:
[tex]\[ (6 + i)(8 - 3i) = 51 - 10i \][/tex]

Thus, the simplified form of [tex]\((6 + i)(8 - 3i)\)[/tex] is [tex]\(51 - 10i\)[/tex].

Comparing it with the given options:
- [tex]\(51 - 10i\)[/tex]
- [tex]\(45 - 10i\)[/tex]
- [tex]\(48 - 3i^2\)[/tex]
- [tex]\(48 - 10i - 3i^2\)[/tex]

The correct answer is [tex]\(\boxed{51 - 10i}\)[/tex].