Draw straight lines to match the equal values. Use different color lines for each pair.

[tex]\[
\begin{array}{l}
12n - 4 - 4n \quad \cdot \quad 8n + 1 \quad \cdot \quad 3 + 3n + 4 + 2n \\
3n + 5 \quad \bullet \quad \bullet \quad n + n + n + 5 \\
5 - 10n + 2 + 15n \\
-4n - 4 + 4n \\
4 + 4n + 4 + 4n \\
-8n + 8 \\
4(2n - 1) \quad \bullet \\
-5n + 7 \\
3n + 5 \quad \bullet \\
4n + 5 + n + 2 \quad \circ \\
2n + 5 + n \\
8 - n + 9n \quad \cdot \quad 3n + 5 + 5n - 1 \\
\end{array}
\][/tex]



Answer :

Certainly! Let’s carefully and clearly match the expressions with equal values.

First, let’s clarify which expressions are equivalent to each other.

1. [tex]\(12n - 4 - 4n \cdot 8n + 1 \cdot 3 + 3n + 4 + 2n\)[/tex]
- This simplifies to: [tex]\(-32n^2 + 17n + 3\)[/tex]

2. [tex]\(3n + 5\)[/tex]
- This simplifies to: [tex]\(3n + 5\)[/tex]

3. [tex]\(n + n + n + 5\)[/tex]
- This simplifies to: [tex]\(3n + 5\)[/tex]

4. [tex]\(5 - 10n + 2 + 15n\)[/tex]
- This simplifies to: [tex]\(5n + 7\)[/tex]

5. [tex]\(-4n - 4 + 4n\)[/tex]
- This simplifies to: [tex]\(-4\)[/tex]

6. [tex]\(4 + 4n + 4 + 4n\)[/tex]
- This simplifies to: [tex]\(8n + 8\)[/tex]

7. [tex]\(-8n + 8\)[/tex]
- This simplifies to: [tex]\(8 - 8n\)[/tex]

8. [tex]\(4(2n - 1)\)[/tex]
- This simplifies to: [tex]\(8n - 4\)[/tex]

9. [tex]\(-5n + 7\)[/tex]
- This simplifies to: [tex]\(7 - 5n\)[/tex]

10. [tex]\(4n + 5 + n + 2\)[/tex]
- This simplifies to: [tex]\(5n + 7\)[/tex]

11. [tex]\(2n + 5 + n\)[/tex]
- This simplifies to: [tex]\(3n + 5\)[/tex]

12. [tex]\(8 - n + 9n\)[/tex]
- This simplifies to: [tex]\(8n + 8\)[/tex]

13. [tex]\(3n + 5 + 5n - 1\)[/tex]
- This simplifies to: [tex]\(8n + 4\)[/tex]

Now, match the equal values:

1. [tex]\(12n - 4 - 4n \cdot 8n + 1 \cdot 3 + 3n + 4 + 2n\)[/tex]
- No match with any other expression.

2. [tex]\(3n + 5\)[/tex] [tex]\(\bullet\)[/tex]
- Matches with:
- [tex]\(n + n + n + 5\)[/tex] [tex]\(\bullet\)[/tex]
- [tex]\(2n + 5 + n\)[/tex]

Use Blue lines to connect these.

3. [tex]\(5 - 10n + 2 + 15n\)[/tex]
- Matches with:
- [tex]\(4n + 5 + n + 2\)[/tex]

Use Red lines to connect these.

4. [tex]\(-4n - 4 + 4n\)[/tex]
- No match with any other expression.

5. [tex]\(4 + 4n + 4 + 4n\)[/tex]
- Matches with:
- [tex]\(8 - n + 9n\)[/tex]

Use Green lines to connect these.

6. [tex]\(-8n + 8\)[/tex]
- No match with any other expression.

7. [tex]\(4(2n - 1)\)[/tex] [tex]\(\circ\)[/tex]
- No match with any other expression.

8. [tex]\(-5n + 7\)[/tex]
- No match with any other expression.

9. [tex]\(3n + 5\)[/tex] [tex]\(\bullet\)[/tex]
- Already matched.

10. [tex]\(4n + 5 + n + 2\)[/tex] [tex]\(\circ\)[/tex]
- Matches with:
- [tex]\(5 - 10n + 2 + 15n\)[/tex]

Use Red lines to connect these.

11. [tex]\(2n + 5 + n\)[/tex]
- Already matched.

12. [tex]\(8 - n + 9n\)[/tex]
- Already matched.

13. [tex]\(3n + 5 + 5n - 1\)[/tex]
- No match with any other expression.

So your final matching looks like this using straight lines:

- Blue Line: [tex]\(3n + 5\)[/tex] [tex]\(\bullet\)[/tex] [tex]\(n+n+n+5\)[/tex] and [tex]\(2n+5+n\)[/tex]
- Red Line: [tex]\(5 - 10n + 2 + 15n\)[/tex] → [tex]\(4n + 5 + n + 2\)[/tex]
- Green Line: [tex]\(4 + 4n + 4 + 4n\)[/tex] → [tex]\(8 - n + 9n\)[/tex]

Remember to use different color lines to connect the matching expressions on your paper or diagram to clearly illustrate the equal values connected by straight lines.

Other Questions