Simplify [tex]\((9 - 5i) - (4 + 10i)\)[/tex].

A. [tex]\(5 - 15i\)[/tex]
B. [tex]\(-10\)[/tex]
C. [tex]\(5 + 5i\)[/tex]
D. [tex]\(20\)[/tex]



Answer :

To simplify the expression [tex]\((9 - 5i) - (4 + 10i)\)[/tex], follow these steps:

1. Distribute the negative sign to each term inside the parentheses:
[tex]\[ (9 - 5i) - 4 - 10i \][/tex]

2. Group the real and imaginary parts separately:
[tex]\[ (9 - 4) + (-5i - 10i) \][/tex]

3. Perform the arithmetic operations for the real and imaginary parts:
[tex]\[ 9 - 4 = 5 \][/tex]
[tex]\[ -5i - 10i = -15i \][/tex]

4. Combine the results:
[tex]\[ 5 - 15i \][/tex]

Therefore, the simplified form of the expression [tex]\((9 - 5i) - (4 + 10i)\)[/tex] is:
[tex]\[ 5 - 15i \][/tex]

So, the correct answer is:
[tex]\[ \boxed{5 - 15i} \][/tex]