What is the value of [tex]-5-\sqrt{-44}[/tex]?

A. [tex]-5-2i\sqrt{11}[/tex]

B. [tex]-5+4\sqrt{11i}[/tex]

C. [tex]-5+2\sqrt{11i}[/tex]

D. [tex]-5-4i\sqrt{1.1}[/tex]



Answer :

To find the value of [tex]\(-5 - \sqrt{-44}\)[/tex], we need to simplify the expression involving the square root of a negative number. Here's a detailed step-by-step solution:

1. Expressing the square root of a negative number:

[tex]\[ \sqrt{-44} = \sqrt{-1 \cdot 44} \][/tex]

2. Breaking it down using the property of square roots:

[tex]\[ \sqrt{-44} = \sqrt{-1} \cdot \sqrt{44} \][/tex]

3. Understanding [tex]\(\sqrt{-1}\)[/tex]:

By definition, [tex]\(\sqrt{-1}\)[/tex] is represented by the imaginary unit [tex]\(i\)[/tex].

[tex]\[ \sqrt{-44} = i \cdot \sqrt{44} \][/tex]

4. Simplifying [tex]\(\sqrt{44}\)[/tex]:

[tex]\[ \sqrt{44} = \sqrt{4 \cdot 11} = \sqrt{4} \cdot \sqrt{11} = 2 \cdot \sqrt{11} \][/tex]

5. Combining the results:

[tex]\[ \sqrt{-44} = i \cdot 2 \cdot \sqrt{11} = 2i \cdot \sqrt{11} \][/tex]

6. Substituting back into the original expression:

[tex]\[ -5 - \sqrt{-44} = -5 - 2i \cdot \sqrt{11} \][/tex]

Therefore, the value of [tex]\(-5 - \sqrt{-44}\)[/tex] simplifies to:

[tex]\[ -5 - 2i \cdot \sqrt{11} \][/tex]

Comparing this to the provided options:

1. [tex]\( -5 - 2i \sqrt{11} \)[/tex]
2. [tex]\( -5 + 4 \sqrt{11i} \)[/tex]
3. [tex]\( -5 + 2 \sqrt{11i} \)[/tex]
4. [tex]\( -5 - 4i \sqrt{1.1} \)[/tex]

The correct option is:

[tex]\[ -5 - 2i \sqrt{11} \][/tex]