Identify all of the following solutions of [tex]\sqrt{x-8}+8=x[/tex].

A. [tex]x=9[/tex]
B. [tex]x=8[/tex]
C. None of the above
D. [tex]x=8[/tex] and [tex]x=9[/tex]



Answer :

To identify the solutions of the equation [tex]\(\sqrt{x-8} + 8 = x\)[/tex], let's examine each given value step by step.

Step 1: Check [tex]\( x = 9 \)[/tex]

Substitute [tex]\( x = 9 \)[/tex] into the equation:
[tex]\[ \sqrt{9-8} + 8 = 9 \][/tex]
Simplify inside the square root:
[tex]\[ \sqrt{1} + 8 = 9 \][/tex]
Since [tex]\(\sqrt{1} = 1\)[/tex], we have:
[tex]\[ 1 + 8 = 9 \][/tex]
This is a true statement. Therefore, [tex]\( x = 9 \)[/tex] is a solution.

Step 2: Check [tex]\( x = 8 \)[/tex]

Substitute [tex]\( x = 8 \)[/tex] into the equation:
[tex]\[ \sqrt{8-8} + 8 = 8 \][/tex]
Simplify inside the square root:
[tex]\[ \sqrt{0} + 8 = 8 \][/tex]
Since [tex]\(\sqrt{0} = 0\)[/tex], we have:
[tex]\[ 0 + 8 = 8 \][/tex]
This is also a true statement. Therefore, [tex]\( x = 8 \)[/tex] is also a solution.

Conclusion:
Since both [tex]\( x = 9 \)[/tex] and [tex]\( x = 8 \)[/tex] satisfy the equation [tex]\(\sqrt{x-8} + 8 = x\)[/tex], the correct answer is:

[tex]\[ x = 8 \text{ and } x = 9 \][/tex]