Multiply [tex]$x^{\frac{2}{5}} \cdot x^{\frac{2}{9}}$[/tex].

A. [tex]$x^{\frac{8}{45}}$[/tex]
B. [tex][tex]$x^{\frac{28}{45}}$[/tex][/tex]
C. [tex]$x^{\frac{4}{45}}$[/tex]
D. [tex]$x^{\frac{2}{7}}$[/tex]



Answer :

To multiply the expressions [tex]\( x^{\frac{2}{5}} \)[/tex] and [tex]\( x^{\frac{2}{9}} \)[/tex], you use the property of exponents that states:

[tex]\[ x^a \cdot x^b = x^{a+b} \][/tex]

1. Identify the exponents:
- The exponent of the first term is [tex]\(\frac{2}{5}\)[/tex].
- The exponent of the second term is [tex]\(\frac{2}{9}\)[/tex].

2. Add the exponents together:
[tex]\[ \frac{2}{5} + \frac{2}{9} \][/tex]

3. To add these fractions, find a common denominator. The denominators are 5 and 9. The least common multiple of 5 and 9 is 45.

4. Convert each fraction to an equivalent fraction with a denominator of 45:
[tex]\[ \frac{2}{5} = \frac{2 \cdot 9}{5 \cdot 9} = \frac{18}{45} \][/tex]
[tex]\[ \frac{2}{9} = \frac{2 \cdot 5}{9 \cdot 5} = \frac{10}{45} \][/tex]

5. Now add the fractions:
[tex]\[ \frac{18}{45} + \frac{10}{45} = \frac{28}{45} \][/tex]

6. Finally, write the result in exponential form:
[tex]\[ x^{\frac{2}{5}} \cdot x^{\frac{2}{9}} = x^{\frac{28}{45}} \][/tex]

Thus, the correct answer is:
[tex]\[ x^{\frac{28}{45}} \][/tex]