Simplify [tex]\left(x^{\frac{2}{5}}\right)^{\frac{5}{6}}[/tex].

A. [tex]x^{\frac{37}{30}}[/tex]

B. [tex]x^{\frac{13}{30}}[/tex]

C. [tex]x^{\frac{10}{11}}[/tex]

D. [tex]x^{\frac{1}{3}}[/tex]



Answer :

To simplify the expression [tex]\(\left(x^{\frac{2}{5}}\right)^{\frac{5}{6}}\)[/tex], we need to use the properties of exponents, specifically the power of a power rule.

The power of a power rule states that [tex]\(\left(a^m\right)^n = a^{m \cdot n}\)[/tex].

Applying this rule to our expression:

[tex]\[ \left(x^{\frac{2}{5}}\right)^{\frac{5}{6}} = x^{\left(\frac{2}{5} \cdot \frac{5}{6}\right)} \][/tex]

Now we multiply the exponents [tex]\(\frac{2}{5}\)[/tex] and [tex]\(\frac{5}{6}\)[/tex]:

[tex]\[ \frac{2}{5} \cdot \frac{5}{6} = \frac{2 \cdot 5}{5 \cdot 6} = \frac{10}{30} = \frac{1}{3} \][/tex]

Thus, the simplified form of the given expression is:

[tex]\[ x^{\frac{1}{3}} \][/tex]

Among the provided options:
- [tex]\(x^{\frac{37}{30}}\)[/tex]
- [tex]\(x^{\frac{13}{30}}\)[/tex]
- [tex]\(x^{\frac{10}{11}}\)[/tex]
- [tex]\(x^{\frac{1}{3}}\)[/tex]

The correct option is:

[tex]\[ \boxed{x^{\frac{1}{3}}} \][/tex]