If [tex]$(x, \frac{1}{100})$[/tex] lies on the graph of [tex]$y=10^x$[/tex], then [tex][tex]$x=$[/tex][/tex]

A. [tex]-2[/tex]
B. [tex]-\frac{1}{2}[/tex]
C. [tex]2[/tex]



Answer :

To find the value of [tex]\( x \)[/tex] given that the point [tex]\( (x, \frac{1}{100}) \)[/tex] lies on the graph [tex]\( y = 10^x \)[/tex], follow these steps:

1. Substitute the known point into the equation:

The point given is [tex]\( (x, \frac{1}{100}) \)[/tex].

Substitute [tex]\( y \)[/tex] with [tex]\( \frac{1}{100} \)[/tex] in the equation [tex]\( y = 10^x \)[/tex]:

[tex]\[ \frac{1}{100} = 10^x \][/tex]

2. Express [tex]\( \frac{1}{100} \)[/tex] as a power of 10:

We know that [tex]\( \frac{1}{100} \)[/tex] can be written as [tex]\( 10^{-2} \)[/tex] because 100 is [tex]\( 10^2 \)[/tex] and taking the reciprocal gives [tex]\( 10^{-2} \)[/tex]:

[tex]\[ 10^{-2} = 10^x \][/tex]

3. Compare the exponents:

Since the bases are the same, we can equate the exponents:

[tex]\[ -2 = x \][/tex]

Thus, the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\( y = 10^x \)[/tex] given the point [tex]\( (x, \frac{1}{100}) \)[/tex] is:

[tex]\[ x = -2 \][/tex]

The answer is [tex]\( -2 \)[/tex].