If [tex]$(-3, y)$[/tex] lies on the graph of [tex]$y = \left(\frac{1}{4}\right)^x$[/tex], then [tex][tex]$y =$[/tex][/tex]

A. 12

B. [tex]$\frac{1}{12}$[/tex]

C. [tex]$\frac{1}{64}$[/tex]

D. 64



Answer :

To determine the value of [tex]\( y \)[/tex] when the point [tex]\((-3, y)\)[/tex] lies on the graph of the function [tex]\( y = \left( \frac{1}{4} \right)^x \)[/tex], we need to substitute [tex]\( x = -3 \)[/tex] into the given function and solve for [tex]\( y \)[/tex].

Given the function:
[tex]\[ y = \left( \frac{1}{4} \right)^x \][/tex]

We substitute [tex]\( x = -3 \)[/tex]:
[tex]\[ y = \left( \frac{1}{4} \right)^{-3} \][/tex]

Recall that raising a fraction to a negative exponent involves taking the reciprocal of the fraction and then raising it to the positive of that exponent:
[tex]\[ \left( \frac{1}{4} \right)^{-3} = \left( 4 \right)^3 \][/tex]

Next, we calculate [tex]\( 4^3 \)[/tex]:
[tex]\[ 4^3 = 4 \times 4 \times 4 = 64 \][/tex]

Therefore, when [tex]\( x = -3 \)[/tex]:
[tex]\[ y = 64 \][/tex]

So, the point [tex]\( (-3, y) \)[/tex] on the graph results in:
[tex]\[ y = 64 \][/tex]

Thus, the value of [tex]\( y \)[/tex] is:
[tex]\[ \boxed{64} \][/tex]