If [tex]$(-1, y)$[/tex] lies on the graph of [tex]$y=2^{2x}$[/tex], then [tex]$y=$[/tex]

A. [tex]$\frac{1}{4}$[/tex]

B. [tex]$-4$[/tex]

C. [tex]$1$[/tex]



Answer :

To find the value of [tex]\( y \)[/tex] such that the point [tex]\((-1, y)\)[/tex] lies on the graph of the function [tex]\( y = 2^{2x} \)[/tex], we need to substitute [tex]\( x = -1 \)[/tex] into the equation and solve for [tex]\( y \)[/tex].

Given [tex]\( y = 2^{2x} \)[/tex]:

1. Substitute [tex]\( x = -1 \)[/tex] into the equation:
[tex]\[ y = 2^{2(-1)} \][/tex]
2. Simplify the exponent:
[tex]\[ y = 2^{-2} \][/tex]
3. Simplify the expression using the negative exponent rule [tex]\(\left(a^{-n} = \frac{1}{a^n}\right)\)[/tex]:
[tex]\[ 2^{-2} = \frac{1}{2^2} \][/tex]
4. Calculate the exponent in the denominator:
[tex]\[ \frac{1}{2^2} = \frac{1}{4} \][/tex]

Therefore, the value of [tex]\( y \)[/tex] is:
\[
y = \frac{1}{4}
\