Which of the following is the rational exponent expression of [tex]\sqrt[6]{f}[/tex]?

A. [tex]6f[/tex]
B. [tex]f^{\frac{1}{6}}[/tex]
C. [tex]\frac{f}{6}[/tex]
D. [tex]f^6[/tex]



Answer :

Let's determine the rational exponent expression for the sixth root of [tex]\( f \)[/tex].

Given the notation [tex]\(\sqrt[6]{f}\)[/tex], we need to convert the radical form into an expression with a rational exponent.

In general, the [tex]\( n \)[/tex]-th root of a number [tex]\( a \)[/tex] can be expressed with a rational exponent as:

[tex]\[ \sqrt[n]{a} = a^{\frac{1}{n}} \][/tex]

For this specific problem, we have [tex]\( n = 6 \)[/tex] and [tex]\( a = f \)[/tex]. Substituting these values into the formula, we get:

[tex]\[ \sqrt[6]{f} = f^{\frac{1}{6}} \][/tex]

Thus, the rational exponent expression for [tex]\(\sqrt[6]{f}\)[/tex] is:

[tex]\[ f^{\frac{1}{6}} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{f^{\frac{1}{6}}} \][/tex]
B one is the correct answer