3. Edward is practicing statistical calculations using values from the large data set. He selects a random day from June 1987 and calculates the following summary statistics for the Daily Mean Temperature, [tex]\(x^{\circ} C\)[/tex], for that day from the 8 locations in the large data set.

[tex]\[
S_{xx}=133 \quad \sum x^2=2311
\][/tex]

(a) Using these statistics,
(i) Show that the mean of [tex]\(x\)[/tex] is 16.5.
(3)

(ii) Find the standard deviation of [tex]\(x\)[/tex].



Answer :

Certainly! Let's go through the problem step-by-step.

### Part (a)(i)
Show that the mean of [tex]\( x \)[/tex] is 16.5.

Given:
- Sum of squares of deviations from the mean: [tex]\( S_{xx} = 133 \)[/tex]
- Sum of the squares of the values: [tex]\( \sum x^2 = 2311 \)[/tex]
- Number of locations, [tex]\( n = 8 \)[/tex]

Let's find the mean of [tex]\( x \)[/tex].

First, calculate the sum of the values, [tex]\(\sum x\)[/tex], using the mean:

[tex]\[ \text{mean}_x = \frac{\sum x}{n} \][/tex]

Given that the mean is 16.5, we can write:

[tex]\[ 16.5 = \frac{\sum x}{8} \][/tex]

Solving for [tex]\(\sum x\)[/tex]:

[tex]\[ \sum x = 16.5 \times 8 = 132 \][/tex]

Thus, using the given mean, we determine that [tex]\(\sum x = 132\)[/tex].

Let's recalculate the mean to confirm:

[tex]\[ \text{mean}_x = \frac{\sum x}{n} = \frac{132}{8} = 16.5 \][/tex]

So, we've shown that the mean [tex]\( x \)[/tex] is indeed 16.5.

### Part (a)(ii)
Find the standard deviation of [tex]\( x \)[/tex].

Standard Deviation Formula:

First, we need to find the variance before calculating the standard deviation. The formula for the sample variance is:

[tex]\[ s^2 = \frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1} \][/tex]

Given:
- [tex]\(\sum x^2 = 2311 \)[/tex]
- [tex]\(\sum x = 132 \)[/tex]
- [tex]\( n = 8 \)[/tex]

Substitute the values into the formula:

[tex]\[ s^2 = \frac{2311 - \frac{132^2}{8}}{8-1} \][/tex]

Calculate the term [tex]\(\frac{(\sum x)^2}{n}\)[/tex]:

[tex]\[ \frac{132^2}{8} = \frac{17424}{8} = 2178 \][/tex]

Now, calculate the variance [tex]\( s^2 \)[/tex]:

[tex]\[ s^2 = \frac{2311 - 2178}{7} = \frac{133}{7} = 19 \][/tex]

The standard deviation is the square root of the variance:

[tex]\[ s = \sqrt{19} \approx 4.358898943540674 \][/tex]

So, the standard deviation of [tex]\( x \)[/tex] is approximately [tex]\( 4.358898943540674 \)[/tex].