Which of the following is the rational exponent expression of [tex]\sqrt[3]{4n}[/tex]?

A. [tex]3n^4[/tex]
B. [tex](4n)^3[/tex]
C. [tex]4n^{\frac{1}{3}}[/tex]
D. [tex](4n)^{\frac{1}{3}}[/tex]



Answer :

To find the rational exponent expression of [tex]\(\sqrt[3]{4n}\)[/tex], we need to recall how to convert a radical expression to an expression with a rational exponent.

The general rule is:
[tex]\[ \sqrt[n]{a} = a^{\frac{1}{n}} \][/tex]

In this case, we are given [tex]\(\sqrt[3]{4n}\)[/tex]. Following the rule:

[tex]\[ \sqrt[3]{4n} = (4n)^{\frac{1}{3}} \][/tex]

Thus, the rational exponent expression of [tex]\(\sqrt[3]{4n}\)[/tex] is:

[tex]\[ (4n)^{\frac{1}{3}} \][/tex]

Therefore, the correct answer is:
[tex]\[ (4n)^{\frac{1}{3}} \][/tex]