Answer :

Sure, let's go through the step-by-step solution to solve the given system of linear equations:

[tex]\[ \begin{cases} 3x + y = 7 \\ x + 2y = 9 \end{cases} \][/tex]

Step 1: Solve one of the equations for one variable.

Let's solve the second equation for [tex]\( x \)[/tex].

[tex]\[ x + 2y = 9 \implies x = 9 - 2y \][/tex]

Step 2: Substitute the expression for [tex]\( x \)[/tex] into the first equation.

Substitute [tex]\( x = 9 - 2y \)[/tex] into [tex]\( 3x + y = 7 \)[/tex].

[tex]\[ 3(9 - 2y) + y = 7 \][/tex]

Step 3: Simplify and solve for [tex]\( y \)[/tex].

[tex]\[ 27 - 6y + y = 7 \\ 27 - 5y = 7 \\ -5y = 7 - 27 \\ -5y = -20 \\ y = \frac{-20}{-5} \\ y = 4 \][/tex]

Step 4: Substitute [tex]\( y \)[/tex] back into the expression found in Step 1 to solve for [tex]\( x \)[/tex].

Substitute [tex]\( y = 4 \)[/tex] into [tex]\( x = 9 - 2y \)[/tex].

[tex]\[ x = 9 - 2(4) \\ x = 9 - 8 \\ x = 1 \][/tex]

Step 5: Verify the solution by substituting [tex]\( x \)[/tex] and [tex]\( y \)[/tex] back into the original equations.

Check in [tex]\( 3x + y = 7 \)[/tex]:

[tex]\[ 3(1) + 4 = 3 + 4 = 7 \quad \text{(which is true)} \][/tex]

Check in [tex]\( x + 2y = 9 \)[/tex]:

[tex]\[ 1 + 2(4) = 1 + 8 = 9 \quad \text{(which is also true)} \][/tex]

Thus, the solution to the system of equations is:

[tex]\[ x = 1 \quad \text{and} \quad y = 4 \][/tex]