What transformations of the parent function [tex]f(x) = |x|[/tex] should be made to obtain the graph [tex]f(x) = -|x| - 5[/tex]?

A. Reflection over the [tex]$x$[/tex]-axis, shift up 5 units
B. Reflection over the [tex]$y$[/tex]-axis, shift down 5 units
C. Reflection over the [tex]$x$[/tex]-axis, shift down 5 units
D. Reflection over the [tex]$y$[/tex]-axis, shift up 5 units



Answer :

To determine the transformations necessary to change the parent function [tex]\( f(x) = |x| \)[/tex] to the new function [tex]\( f(x) = -|x| - 5 \)[/tex], we can break down the transformations step by step:

1. Reflection over the [tex]\( x \)[/tex]-axis:
- The function [tex]\( f(x) = |x| \)[/tex] becomes [tex]\( f(x) = -|x| \)[/tex] when it is reflected over the [tex]\( x \)[/tex]-axis. This is because applying a negative sign to the entire function reflects it over the horizontal axis. Graphically, each point [tex]\( (x, y) \)[/tex] on the original graph is mirrored to [tex]\( (x, -y) \)[/tex] on the new graph.

[tex]\[ f(x) = |x| \quad \rightarrow \quad f(x) = -|x| \][/tex]

2. Shift down 5 units:
- The function [tex]\( f(x) = -|x| \)[/tex] becomes [tex]\( f(x) = -|x| - 5 \)[/tex] when it is shifted downwards by 5 units. This transformation involves subtracting 5 from the entire function, effectively moving each point on the graph down by 5 units.

[tex]\[ f(x) = -|x| \quad \rightarrow \quad f(x) = -|x| - 5 \][/tex]

Thus, the transformations needed are:
1. Reflection over the [tex]\( x \)[/tex]-axis
2. Shift down 5 units

Among the given multiple choice options, the correct answer is:

Reflection over the [tex]\( x \)[/tex]-axis, shift down 5 units

Therefore, the correct choice is:

3. Reflection over the [tex]\( x \)[/tex]-axis, shift down 5 units