Given the function, [tex]$f(x)=\sqrt{3x+3}-3$[/tex], choose the correct transformation(s).

A. Horizontal Compression, Left 1, Down 3
B. Vertical Stretch, Left 3, Down 3
C. Vertical Compression, Left 1, Down 3
D. Horizontal Stretch, Left 3, Down 3



Answer :

To analyze the transformations of the given function [tex]\( f(x) = \sqrt{3x + 3} - 3 \)[/tex], we will look at each component of the function and determine the specific transformations applied to the base function, which is [tex]\( \sqrt{x} \)[/tex].

### Step 1: Horizontal and Vertical Shifts, Scaling
1. Inside the square root function ([tex]\( \sqrt{3x + 3} \)[/tex]):
- The [tex]\( 3x \)[/tex] component suggests a horizontal compression by a factor of [tex]\( \frac{1}{3} \)[/tex].
- The [tex]\( +3 \)[/tex] inside the square root function indicates a shift to the left by 1 unit. This comes from solving [tex]\( 3x + 3 = 0 \)[/tex] which gives [tex]\( x = -1 \)[/tex].

2. Outside the square root function ([tex]\( -3 \)[/tex]):
- The [tex]\( -3 \)[/tex] outside the square root function indicates a vertical shift downward by 3 units.

### Summary of Transformations:
- Horizontal Compression by a factor of [tex]\( \frac{1}{3} \)[/tex]
- Shift to the left by 1 unit
- Shift downward by 3 units

Therefore, the correct set of transformations for the function [tex]\( f(x) = \sqrt{3x + 3} - 3 \)[/tex] is:

- Horizontal Compression by a factor of [tex]\( \frac{1}{3} \)[/tex]
- Shift to the left by 1 unit
- Shift downward by 3 units

Hence, the transformations described as: Vertical Compression, Left 1, Down 3, accurately reflect the changes made to the base function [tex]\( \sqrt{x} \)[/tex].