Answer :
To convert the angle from radians to degrees, follow these steps:
1. Understand the relationship between radians and degrees: The general formula to convert radians to degrees is:
[tex]\[ \text{Degrees} = \text{Radians} \times \left(\frac{180}{\pi}\right). \][/tex]
2. Given radians:
[tex]\[ \frac{4 \pi}{3} \][/tex]
3. Apply the conversion formula:
[tex]\[ \text{Degrees} = \frac{4 \pi}{3} \times \left(\frac{180}{\pi}\right) \][/tex]
4. Simplify the expression:
- The [tex]\(\pi\)[/tex] terms cancel out:
[tex]\[ \text{Degrees} = \frac{4 \times 180}{3} \][/tex]
- Perform the multiplication and division:
[tex]\[ \text{Degrees} = \frac{720}{3} = 240 \][/tex]
Therefore, [tex]\(\frac{4 \pi}{3}\)[/tex] radians is equal to [tex]\(240^{\circ}\)[/tex].
So, the correct choice from the given options is:
[tex]\[ 240^{\circ} \][/tex]
1. Understand the relationship between radians and degrees: The general formula to convert radians to degrees is:
[tex]\[ \text{Degrees} = \text{Radians} \times \left(\frac{180}{\pi}\right). \][/tex]
2. Given radians:
[tex]\[ \frac{4 \pi}{3} \][/tex]
3. Apply the conversion formula:
[tex]\[ \text{Degrees} = \frac{4 \pi}{3} \times \left(\frac{180}{\pi}\right) \][/tex]
4. Simplify the expression:
- The [tex]\(\pi\)[/tex] terms cancel out:
[tex]\[ \text{Degrees} = \frac{4 \times 180}{3} \][/tex]
- Perform the multiplication and division:
[tex]\[ \text{Degrees} = \frac{720}{3} = 240 \][/tex]
Therefore, [tex]\(\frac{4 \pi}{3}\)[/tex] radians is equal to [tex]\(240^{\circ}\)[/tex].
So, the correct choice from the given options is:
[tex]\[ 240^{\circ} \][/tex]