Convert [tex]\frac{4 \pi}{3}[/tex] to degrees.

A. [tex]480^{\circ}[/tex]
B. [tex]120^{\circ}[/tex]
C. [tex]240^{\circ}[/tex]
D. [tex]60^{\circ}[/tex]



Answer :

To convert the angle from radians to degrees, follow these steps:

1. Understand the relationship between radians and degrees: The general formula to convert radians to degrees is:
[tex]\[ \text{Degrees} = \text{Radians} \times \left(\frac{180}{\pi}\right). \][/tex]

2. Given radians:
[tex]\[ \frac{4 \pi}{3} \][/tex]

3. Apply the conversion formula:
[tex]\[ \text{Degrees} = \frac{4 \pi}{3} \times \left(\frac{180}{\pi}\right) \][/tex]

4. Simplify the expression:
- The [tex]\(\pi\)[/tex] terms cancel out:
[tex]\[ \text{Degrees} = \frac{4 \times 180}{3} \][/tex]

- Perform the multiplication and division:
[tex]\[ \text{Degrees} = \frac{720}{3} = 240 \][/tex]

Therefore, [tex]\(\frac{4 \pi}{3}\)[/tex] radians is equal to [tex]\(240^{\circ}\)[/tex].

So, the correct choice from the given options is:
[tex]\[ 240^{\circ} \][/tex]