Answer :

To find the limit [tex]\(\lim_{x \rightarrow a} \frac{\sin (x-a)}{x^2 - a^2}\)[/tex], let's proceed step by step.

First, observe the form of the expression when [tex]\(x\)[/tex] approaches [tex]\(a\)[/tex]:

[tex]\[ \lim_{x \rightarrow a} \frac{\sin (x-a)}{x^2 - a^2} \][/tex]

If we directly substitute [tex]\(x = a\)[/tex] into the expression, we get:

[tex]\[ \frac{\sin(a-a)}{a^2 - a^2} = \frac{0}{0} \][/tex]

This is an indeterminate form, so we must simplify or transform the expression to evaluate the limit.

Notice that [tex]\(x^2 - a^2\)[/tex] can be factored using the difference of squares:

[tex]\[ x^2 - a^2 = (x-a)(x+a) \][/tex]

So we can rewrite the limit as:

[tex]\[ \lim_{x \rightarrow a} \frac{\sin (x-a)}{(x-a)(x+a)} \][/tex]

Now, we can separate the fraction:

[tex]\[ \lim_{x \rightarrow a} \frac{\sin (x-a)}{x-a} \cdot \frac{1}{x+a} \][/tex]

Let's address each part separately. Consider the limit of the first factor. We know a standard limit result:

[tex]\[ \lim_{t \rightarrow 0} \frac{\sin t}{t} = 1 \][/tex]

By making the substitution [tex]\(t = x - a\)[/tex], as [tex]\(x\)[/tex] approaches [tex]\(a\)[/tex], [tex]\(t\)[/tex] approaches [tex]\(0\)[/tex]. Therefore:

[tex]\[ \lim_{x \rightarrow a} \frac{\sin (x-a)}{x-a} = 1 \][/tex]

Next, consider the second factor. As [tex]\(x \rightarrow a\)[/tex], the term [tex]\((x+a)\)[/tex] becomes [tex]\((a+a) = 2a\)[/tex]:

[tex]\[ \lim_{x \rightarrow a} \frac{1}{x+a} = \frac{1}{2a} \][/tex]

Combining these two results, we have:

[tex]\[ \lim_{x \rightarrow a} \frac{\sin (x-a)}{(x-a)(x+a)} = \left( \lim_{x \rightarrow a} \frac{\sin (x-a)}{x-a} \right) \cdot \left( \lim_{x \rightarrow a} \frac{1}{x+a} \right) \][/tex]

[tex]\[ = 1 \cdot \frac{1}{2a} = \frac{1}{2a} \][/tex]

Thus, the limit is:

[tex]\[ \boxed{\frac{1}{2a}} \][/tex]