Determine the equation of the inverse of [tex]y=4^{2x+9}[/tex].

A. [tex]y=4 \cdot \log_2 x - 9[/tex]
B. [tex]y=2 \cdot \log_4 x - 9[/tex]
C. [tex]y=\frac{\log_4 x}{2} - 9[/tex]
D. [tex]y=\frac{\log_4 x - 9}{2}[/tex]



Answer :

To determine the equation of the inverse of the function [tex]\( y = 4^{2x + 9} \)[/tex], we need to follow a series of steps to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex] and then interchange [tex]\( x \)[/tex] and [tex]\( y \)[/tex].

1. Rewrite the given function:
[tex]\[ y = 4^{2x + 9} \][/tex]

2. Switch [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to find the inverse function:
[tex]\[ x = 4^{2y + 9} \][/tex]

3. Take the logarithm base 4 of both sides to solve for [tex]\( y \)[/tex]:
Recall that if [tex]\( a = b^c \)[/tex], then [tex]\( \log_b(a) = c \)[/tex].

[tex]\[ \log_4(x) = 2y + 9 \][/tex]

4. Isolate [tex]\( y \)[/tex]:
[tex]\[ \log_4(x) - 9 = 2y \][/tex]

[tex]\[ y = \frac{\log_4(x) - 9}{2} \][/tex]

Thus, the inverse function of [tex]\( y = 4^{2x + 9} \)[/tex] is:
[tex]\[ y = \frac{\log_4(x) - 9}{2} \][/tex]

Therefore, the correct answer is:
[tex]\[ y = \frac{\log_4(x) - 9}{2} \][/tex]