What is the correct inverse function for [tex]$f(x) = \ln(5x)$[/tex]?

A. [tex]$f^{-1}(x) = 5e^x$[/tex]

B. [tex]$f^{\prime}(x) = \frac{e^x}{5}$[/tex]

C. [tex][tex]$f^{\prime}(x) = e^{5x}$[/tex][/tex]

D. [tex]$f^{-1}(x) = \frac{5}{e^x}$[/tex]



Answer :

To find the inverse function for [tex]\( f(x) = \ln 5x \)[/tex], follow these steps:

1. Start with the given function:
[tex]\[ f(x) = \ln 5x \][/tex]

2. To find the inverse, we first express the function in terms of [tex]\( y \)[/tex]:
[tex]\[ y = \ln 5x \][/tex]

3. Our goal is to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]. First, exponentiate both sides of the equation to get rid of the natural logarithm:
[tex]\[ e^y = e^{\ln 5x} \][/tex]

4. Recall that [tex]\( e \)[/tex] and the natural logarithm are inverse functions, so [tex]\( e^{\ln 5x} = 5x \)[/tex]. Therefore, we get:
[tex]\[ e^y = 5x \][/tex]

5. Now, solve for [tex]\( x \)[/tex] by isolating it on one side of the equation:
[tex]\[ x = \frac{e^y}{5} \][/tex]

6. Since [tex]\( y \)[/tex] was our original [tex]\( f(x) \)[/tex], we write the inverse function by swapping [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{e^x}{5} \][/tex]

Hence, the correct inverse function for [tex]\( f(x) = \ln 5x \)[/tex] is:
[tex]\[ f^{-1}(x) = \frac{e^x}{5} \][/tex]

So, the correct choice from the given options is:
[tex]\[ f^1(x)=\frac{e^x}{5} \][/tex]