Answer :
To find the circumference of a circle with a given radius, we use the formula:
[tex]\[ C = 2 \pi r \][/tex]
where [tex]\( C \)[/tex] is the circumference and [tex]\( r \)[/tex] is the radius of the circle.
Steps:
1. Identify the radius of the circle.
2. Use the formula to calculate the circumference.
3. Substitute the given radius into the formula.
4. Calculate the result.
Given:
- Radius [tex]\( r = 10.5 \)[/tex] meters
Following the steps:
1. Plug the value of the radius into the formula:
[tex]\[ C = 2 \pi \times 10.5 \][/tex]
2. To get the numerical value, we multiply:
[tex]\[ C \approx 2 \times 3.14159 \times 10.5 \][/tex]
3. Performing the multiplication:
[tex]\[ C \approx 65.97344572538566 \][/tex]
Thus, the circumference of a circle with a radius of 10.5 meters is approximately [tex]\( 65.97344572538566 \)[/tex] meters.
[tex]\[ C = 2 \pi r \][/tex]
where [tex]\( C \)[/tex] is the circumference and [tex]\( r \)[/tex] is the radius of the circle.
Steps:
1. Identify the radius of the circle.
2. Use the formula to calculate the circumference.
3. Substitute the given radius into the formula.
4. Calculate the result.
Given:
- Radius [tex]\( r = 10.5 \)[/tex] meters
Following the steps:
1. Plug the value of the radius into the formula:
[tex]\[ C = 2 \pi \times 10.5 \][/tex]
2. To get the numerical value, we multiply:
[tex]\[ C \approx 2 \times 3.14159 \times 10.5 \][/tex]
3. Performing the multiplication:
[tex]\[ C \approx 65.97344572538566 \][/tex]
Thus, the circumference of a circle with a radius of 10.5 meters is approximately [tex]\( 65.97344572538566 \)[/tex] meters.