Answer :
Certainly! Let's solve this step-by-step:
1. Understanding the Problem:
- We start with a milk tanker that has 100 liters of milk.
- An amount of [tex]\(65 \frac{2}{3}\)[/tex] liters of milk is used.
2. Convert the Mixed Number to an Improper Fraction (or Decimal):
- [tex]\(65 \frac{2}{3}\)[/tex] can be converted into a decimal.
To convert [tex]\(65 \frac{2}{3}\)[/tex] to a decimal:
- The whole number part is [tex]\(65\)[/tex].
- The fractional part is [tex]\(\frac{2}{3}\)[/tex], which equals approximately [tex]\(0.66666666666667\)[/tex].
Thus, [tex]\(65 \frac{2}{3}\)[/tex] is equal to approximately [tex]\(65.66666666666667\)[/tex] liters.
3. Subtract the Used Amount from the Initial Amount:
- We started with 100 liters of milk.
- We used [tex]\(65.66666666666667\)[/tex] liters.
To find the amount of milk left, subtract the used amount from the initial amount:
[tex]\[ 100 - 65.66666666666667 = 34.33333333333333 \][/tex]
4. Conclusion:
- The amount of milk left in the tanker is approximately [tex]\(34.33333333333333\)[/tex] liters.
Thus, after using [tex]\(65 \frac{2}{3}\)[/tex] liters of milk, there are approximately [tex]\(34.33333333333333\)[/tex] liters of milk left in the tanker.
1. Understanding the Problem:
- We start with a milk tanker that has 100 liters of milk.
- An amount of [tex]\(65 \frac{2}{3}\)[/tex] liters of milk is used.
2. Convert the Mixed Number to an Improper Fraction (or Decimal):
- [tex]\(65 \frac{2}{3}\)[/tex] can be converted into a decimal.
To convert [tex]\(65 \frac{2}{3}\)[/tex] to a decimal:
- The whole number part is [tex]\(65\)[/tex].
- The fractional part is [tex]\(\frac{2}{3}\)[/tex], which equals approximately [tex]\(0.66666666666667\)[/tex].
Thus, [tex]\(65 \frac{2}{3}\)[/tex] is equal to approximately [tex]\(65.66666666666667\)[/tex] liters.
3. Subtract the Used Amount from the Initial Amount:
- We started with 100 liters of milk.
- We used [tex]\(65.66666666666667\)[/tex] liters.
To find the amount of milk left, subtract the used amount from the initial amount:
[tex]\[ 100 - 65.66666666666667 = 34.33333333333333 \][/tex]
4. Conclusion:
- The amount of milk left in the tanker is approximately [tex]\(34.33333333333333\)[/tex] liters.
Thus, after using [tex]\(65 \frac{2}{3}\)[/tex] liters of milk, there are approximately [tex]\(34.33333333333333\)[/tex] liters of milk left in the tanker.