Answer :
Certainly! Let's break down the given problem step-by-step to solve for the value of [tex]\( \frac{Z_1}{Z_3} \)[/tex].
1. Calculate [tex]\( Z_1 \)[/tex]:
The expression for [tex]\( Z_1 \)[/tex] is [tex]\( 2 + 31 \)[/tex].
[tex]\[ Z_1 = 2 + 31 = 33 \][/tex]
2. Determine [tex]\( Z_3 \)[/tex]:
The problem mentions [tex]\( Z_1 - 3 - 21 \)[/tex]. Simplifying this expression, we get:
[tex]\[ Z_1 - 3 - 21 = 33 - 3 - 21 = 33 - 24 = 9 \][/tex]
However, it seems more appropriate to utilize direct information for [tex]\( Z_3 \)[/tex] separately. For our context, [tex]\( Z_3 = 21 \)[/tex].
3. Calculate [tex]\( \frac{Z_1}{Z_3} \)[/tex]:
Now, we need to find the value of [tex]\( \frac{Z_1}{Z_3} \)[/tex].
[tex]\[ \frac{Z_1}{Z_3} = \frac{33}{21} \][/tex]
4. Simplify the fraction [tex]\( \frac{33}{21} \)[/tex]:
To simplify [tex]\( \frac{33}{21} \)[/tex] to its decimal form:
[tex]\[ \frac{33}{21} \approx 1.5714285714285714 \][/tex]
Therefore, the detailed solution yields the following values:
- [tex]\( Z_1 = 33 \)[/tex]
- [tex]\( Z_3 = 21 \)[/tex]
- [tex]\( \frac{Z_1}{Z_3} \approx 1.5714285714285714 \)[/tex]
These steps demonstrate the complete solution for the given question.
1. Calculate [tex]\( Z_1 \)[/tex]:
The expression for [tex]\( Z_1 \)[/tex] is [tex]\( 2 + 31 \)[/tex].
[tex]\[ Z_1 = 2 + 31 = 33 \][/tex]
2. Determine [tex]\( Z_3 \)[/tex]:
The problem mentions [tex]\( Z_1 - 3 - 21 \)[/tex]. Simplifying this expression, we get:
[tex]\[ Z_1 - 3 - 21 = 33 - 3 - 21 = 33 - 24 = 9 \][/tex]
However, it seems more appropriate to utilize direct information for [tex]\( Z_3 \)[/tex] separately. For our context, [tex]\( Z_3 = 21 \)[/tex].
3. Calculate [tex]\( \frac{Z_1}{Z_3} \)[/tex]:
Now, we need to find the value of [tex]\( \frac{Z_1}{Z_3} \)[/tex].
[tex]\[ \frac{Z_1}{Z_3} = \frac{33}{21} \][/tex]
4. Simplify the fraction [tex]\( \frac{33}{21} \)[/tex]:
To simplify [tex]\( \frac{33}{21} \)[/tex] to its decimal form:
[tex]\[ \frac{33}{21} \approx 1.5714285714285714 \][/tex]
Therefore, the detailed solution yields the following values:
- [tex]\( Z_1 = 33 \)[/tex]
- [tex]\( Z_3 = 21 \)[/tex]
- [tex]\( \frac{Z_1}{Z_3} \approx 1.5714285714285714 \)[/tex]
These steps demonstrate the complete solution for the given question.