To solve the equation [tex]\( \$ = 1 \cdot (x + 4) \)[/tex], let's follow these steps:
1. Identify the Equation: The given equation is [tex]\( \$ = 1 \cdot (x + 4) \)[/tex].
2. Apply the Distributive Property: The distributive property states that [tex]\( a(b + c) = ab + ac \)[/tex]. In this case, we have:
[tex]\[ \$ = 1 \cdot (x + 4) \][/tex]
By applying the distributive property, we distribute the 1 to both [tex]\( x \)[/tex] and 4.
3. Simplify the Expression: When we distribute the 1, it does not change the values inside the parentheses. So, we get:
[tex]\[ \$ = 1 \cdot x + 1 \cdot 4 \][/tex]
4. Perform the Multiplications: Next, we perform the multiplications:
[tex]\[ \$ = 1 \cdot x = x \][/tex]
[tex]\[ 1 \cdot 4 = 4 \][/tex]
5. Combine the Results: Now, we combine the results of the multiplications:
[tex]\[ \$ = x + 4 \][/tex]
Hence, the simplified form of the equation is:
[tex]\[ \$ = x + 4 \][/tex]
This is the final simplified expression for the given equation.