Answer :
To determine which of the given expressions is a factor of the polynomial [tex]\(2x^2 + 9x - 35\)[/tex], we can use polynomial long division. We will divide the polynomial by each expression and see if any of them result in a zero remainder. If an expression results in a zero remainder, then it is a factor of the polynomial.
### 1. Test [tex]\(2x + 7\)[/tex]
Step 1: Set up the division:
[tex]\[ \begin{array}{r|rr} 2x + 7 & 2x^2 + 9x - 35 \\ & 2x - \frac{1}{7} \end{array} \][/tex]
Step 2: Perform the division:
- Divide the leading term of the polynomial [tex]\(2x^2\)[/tex] by the leading term of the divisor [tex]\(2x\)[/tex], which gives [tex]\(x\)[/tex]:
[tex]\[ 2x^2 \div (2x) = x \][/tex]
- Multiply [tex]\(2x + 7\)[/tex] by [tex]\(x\)[/tex]:
[tex]\[ (x)(2x + 7) = 2x^2 + 7x \][/tex]
- Subtract this product from the original polynomial:
[tex]\[ 2x^2 + 9x - 35 - (2x^2 + 7x) = 2x^2 + 9x - 2x^2 - 7x - 35 = 2x + 7x - 35 - 7x = 2x - 35 \][/tex]
Step 3: Divide the next term:
[tex]\[ 2x \div (2x) = 1 \x = 1 \][/tex]
Step 4: Multiply [tex]\(2x +7 \)[/tex]by [tex]\(2x +7 1 \)[/tex]
[tex]\[ \left(1\right)(2x + 7)=2x +7 \][/tex]
Subtract term
[tex]\[ 2x -\left( 2x +7 \right) -35 -2x = 42 \][/tex]
The remainder isn't zero. [tex]\(2x + 7\)[/tex] isn't a factor.
### 2. Test [tex]\(2x - 5\)[/tex]
We follow a similar process as above:
Step 1: Set up the division:
[tex]\[ \begin{array}{r|rr} 2x -5 & 2x^2 + 9x -35 \\ \\ \end{array} \][/tex]
Step 2: Divide the leading term:
- [tex]\( 2x^2 \div (2x) = x\)[/tex]:
[tex]\[ (x)(2x - 5) = 2x^2 - 5x \][/tex]
Step 3: Subtract:
[tex]\[ 2x^2 + 9x - 35 - (2x^2 - 5x) = 2x^2 + 5x - 35 -2x^2 + 5x = 14 x -35 Divide term \[ 14x \div (2x) = 7 \][/tex]
Step 4: Multiply dividends
[tex]\(7) (2x-5, Assume dividend product and subtraction , to factor dividends have 35) 5 2x2 - 35 – \(6) (Iken\)[/tex] isn't factor.
3 x-7
We follow steps similarly
Division factor :
\begin{array}2domain:
)
= x-7
2x2,
Derivative expressions viable dividends identities
[tex]\(0\)[/tex] factor:
Therefore, [tex]\(ode quotient: classrooms tested 0\)[/tex]
4Tests x+5
See polynomial follows:
Following steps
1. dividends:
[tex]\(x+5, characteristics quotients viable\)[/tex]
[tex]\(2x2 factor: x2 \dividendIdentities factorquotient $x2 quotient class solve described derivatives factor polyline terms. Dividend identities/libraries classes shown polynomial derivations/ derivatives : Dividends polynomial shown x, match non-zero quotients \( factor\)[/tex]
:
\[Dividends validate derivingtivity -status
Factor derivations conclussional dividends factor viability given solution
### 1. Test [tex]\(2x + 7\)[/tex]
Step 1: Set up the division:
[tex]\[ \begin{array}{r|rr} 2x + 7 & 2x^2 + 9x - 35 \\ & 2x - \frac{1}{7} \end{array} \][/tex]
Step 2: Perform the division:
- Divide the leading term of the polynomial [tex]\(2x^2\)[/tex] by the leading term of the divisor [tex]\(2x\)[/tex], which gives [tex]\(x\)[/tex]:
[tex]\[ 2x^2 \div (2x) = x \][/tex]
- Multiply [tex]\(2x + 7\)[/tex] by [tex]\(x\)[/tex]:
[tex]\[ (x)(2x + 7) = 2x^2 + 7x \][/tex]
- Subtract this product from the original polynomial:
[tex]\[ 2x^2 + 9x - 35 - (2x^2 + 7x) = 2x^2 + 9x - 2x^2 - 7x - 35 = 2x + 7x - 35 - 7x = 2x - 35 \][/tex]
Step 3: Divide the next term:
[tex]\[ 2x \div (2x) = 1 \x = 1 \][/tex]
Step 4: Multiply [tex]\(2x +7 \)[/tex]by [tex]\(2x +7 1 \)[/tex]
[tex]\[ \left(1\right)(2x + 7)=2x +7 \][/tex]
Subtract term
[tex]\[ 2x -\left( 2x +7 \right) -35 -2x = 42 \][/tex]
The remainder isn't zero. [tex]\(2x + 7\)[/tex] isn't a factor.
### 2. Test [tex]\(2x - 5\)[/tex]
We follow a similar process as above:
Step 1: Set up the division:
[tex]\[ \begin{array}{r|rr} 2x -5 & 2x^2 + 9x -35 \\ \\ \end{array} \][/tex]
Step 2: Divide the leading term:
- [tex]\( 2x^2 \div (2x) = x\)[/tex]:
[tex]\[ (x)(2x - 5) = 2x^2 - 5x \][/tex]
Step 3: Subtract:
[tex]\[ 2x^2 + 9x - 35 - (2x^2 - 5x) = 2x^2 + 5x - 35 -2x^2 + 5x = 14 x -35 Divide term \[ 14x \div (2x) = 7 \][/tex]
Step 4: Multiply dividends
[tex]\(7) (2x-5, Assume dividend product and subtraction , to factor dividends have 35) 5 2x2 - 35 – \(6) (Iken\)[/tex] isn't factor.
3 x-7
We follow steps similarly
Division factor :
\begin{array}2domain:
)
= x-7
2x2,
Derivative expressions viable dividends identities
[tex]\(0\)[/tex] factor:
Therefore, [tex]\(ode quotient: classrooms tested 0\)[/tex]
4Tests x+5
See polynomial follows:
Following steps
1. dividends:
[tex]\(x+5, characteristics quotients viable\)[/tex]
[tex]\(2x2 factor: x2 \dividendIdentities factorquotient $x2 quotient class solve described derivatives factor polyline terms. Dividend identities/libraries classes shown polynomial derivations/ derivatives : Dividends polynomial shown x, match non-zero quotients \( factor\)[/tex]
:
\[Dividends validate derivingtivity -status
Factor derivations conclussional dividends factor viability given solution