Select the best answer for the question.

1. Identify the [tex]$y$[/tex]-intercept of the linear equation [tex]$3x + 2y - 18 = 0$[/tex].

A. [tex][tex]$(0, 6)$[/tex][/tex]
B. [tex]$(0, 9)$[/tex]
C. [tex]$(6, 0)$[/tex]
D. [tex][tex]$(9, 0)$[/tex][/tex]



Answer :

To find the [tex]$y$[/tex]-intercept of the linear equation [tex]\(3x + 2y - 18 = 0\)[/tex], follow these steps:

1. Understand the concept of the [tex]$y$[/tex]-intercept: The [tex]$y$[/tex]-intercept occurs where the line crosses the [tex]$y$[/tex]-axis. At this point, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].

2. Substitute [tex]\(x = 0\)[/tex] into the equation:
[tex]\[ 3(0) + 2y - 18 = 0 \][/tex]

3. Simplify the equation:
[tex]\[ 0 + 2y - 18 = 0 \][/tex]
[tex]\[ 2y - 18 = 0 \][/tex]

4. Solve for [tex]\(y\)[/tex]:
[tex]\[ 2y = 18 \][/tex]
[tex]\[ y = \frac{18}{2} \][/tex]
[tex]\[ y = 9 \][/tex]

5. Identify the coordinates of the [tex]$y$[/tex]-intercept: Since [tex]\(x = 0\)[/tex] and [tex]\(y = 9\)[/tex], the [tex]$y$[/tex]-intercept is [tex]\((0, 9)\)[/tex].

Thus, the best answer to the question is:
B. [tex]\((0, 9)\)[/tex]